of developing heart failure in hypertrophic cardiomyopathy (HCM). The association between LVOTO and LV torsional mechanics has not been well studied.

Aim: Compare standard echocardiographic measures and myocardial deformation in patients with HCM.

Methods: Echocardiography using GE Vivid 7/9 was performed in 372 patients (HCM). In 105, peak pressure gradient >30 mmHg at rest or with Valsalva manoeuvre was measured.

Results: Patients with LVOTO were older with smaller LV end-systolic dimension (LVESD) and LV end-diastolic dimension, higher LV ejection fraction, longer anterior mitral valve leaflet length (AMVLL), higher early transmural pulsed-wave to septal tissue Doppler velocity ratio (E/e') and higher peak torsion. Using stepwise forward logistic regression, LVESD, AMVLL, E/e' and peak torsion were independently associated with LVOTO (see Table 1). Peak torsion was similarly enhanced in patients with LVOTO manifest only during Valsalva (20.5 ± 7.9, P = 0.009) compared to patients without LVOTO (15.8 ± 6.3).

Conclusion: Peak torsion is independently associated with LVOTO in patients with HCM. Peak torsion was similarly exaggerated in patients with only latent LVOTO suggesting it may play a contributory role to LVOTO in HCM.

http://dx.doi.org/10.1016/j.hlc.2019.06.088

D88

Familial Dilated Cardiomyopathy – Enhancing Detection Using Systematic Screening

M. Stubbs *, J. Skinner, P. Ruysgrok

Background: Dilated cardiomyopathy (DCM) is the leading indication for heart transplantation in New Zealand (NZ). The familial subtype (FDCM) is aggressive, presents early, and is implicated in up to 50% of idiopathic DCM (IDCM). Diagnosis requires an affected individual having ≥2 affected close relatives. Adequate family pedigree analysis is diagnostic-estically crucial, and screening relatives is imperative as pre-symptomatic therapy improves outcomes. We utilised a validated family history survey to screen our NZ heart transplant population for FDCM more systematically.

Methods: Medical records of living heart transplant patients with DCM or FDCM diagnoses (77/339 patients) were reviewed. Patients were provided our survey via post/email and at clinic visits. We evaluated our 12 question clinical survey’s efficacy in obtaining a complete three-generation family history and compared that to information documented in the medical records.

Results: Fifty-one (66.2%) surveys were returned. Complete family history was obtained in 47/51 (92.2%), compared with 10/51 (19.6%) specifically documented in medical records. Responders identified 16 relatives who were also referred for heart transplantation, or who died ≤50 years with cardiomyopathy.

The tool diagnosed FDCM in 25/51 (49.0%), with a further 3 possible FDCM, already yielding 6 additional patients not previously diagnosed. The mean age at first presentation of FDCM was 37 years (23 were male, 2 female), compared with 43 years in the IDCM group.

Conclusion: Utilising a formal family screening tool improves pedigree analysis ensuring more effective detection of FDCM, which is prevalent in the NZ transplant cohort. Formalised systematic screening has great potential to improve outcomes.

http://dx.doi.org/10.1016/j.hlc.2019.06.089

D89

Generation of Novel Cardiac Specific AAV Vectors by Directed Evolution in Human iPSC Derived Cardiomyocytes

C. Kok 1,2, S. Igoor 1, R. Skelton 1, J. Chong 1,2,3, D. Kimberley 2, M. Cabanes-Creus 5, I. Alexander 6, L. Lisowski 4,8, E. Kizana 1,2,3

1 Center for Heart Research, Westmead Institute For Medical Research, Westmead, Australia
2 Westmead Clinical School, Faculty of Medicine and Health, University of Sydney, Sydney, Australia
3 Department of Cardiology, Westmead Hospital, Westmead, Australia
4 Vector and Gene Engineering Facility, Children’s Medical Research Institute, Westmead, Australia
5 Translational Virology Group, Children’s Medical Research Institute, Westmead, Australia
6 Gene Therapy Research Unit, Children’s Medical Research Institute, The University of Sydney, Faculty of Medicine and Health and Sydney Children’s Hospitals Network, Westmead, Australia
7 The University of Sydney, Sydney Medical School, Discipline of Child and Adolescent Health, Westmead, Australia
8 Military Institute of Hygiene and Epidemiology, The Biological Threats Identification and Countermeasure Centre, Pulawy, Poland

Recombinant adeno-associated viral (rAAV) vectors have emerged as one of the most promising gene therapy vectors. However, recent evidence has indicated that successful rAAV-mediated gene therapy in animal models may not translate to the same therapeutic benefit in humans. This is...