Abstracts

173

Cost of Anticoagulation for Non-Valvular Atrial Fibrillation in Australia

D. Pol ∗, J. Yao, L. Dawson, M. Brooks
The Royal Melbourne Hospital, Parkville, Australia

Objectives: Since 2013, non-vitamin K antagonist oral anticoagulants (NOACs) have surpassed Warfarin to become the mainstay treatment of non-valvular atrial fibrillation (AF) in Australia. We examine the analogous change in cost of anticoagulation over the past 5 years.

Methods: Data were extrapolated from the Pharmaceutical Benefits Scheme (PBS) and Medicare Australia. We examined the total number of scripts and cost of Warfarin and all NOACs- Apixaban, Rivaroxaban, Dabigatran- that were available for non-valvular AF from September 2013 until October 2018. Month-to-month comparisons were made between the cost of all NOACs and Warfarin. INR testing cost was examined over the same period.

Results: NOAC prescription in Australia has continued to rise with a 3530% increase from September 2013 to October 2018 corresponding to a 42.8% decline in Warfarin use. Our study further demonstrates a 31.9% decrease in INR testing.

Apixaban has now exceeded Rivaroxaban as the most commonly prescribed NOAC (48.2% vs. 40.4%) for non-valvular AF. With the increasing use of NOACs, cost has also increased proportionately by 3400% from $790,569 in September 2013 to $26,902,194 in October 2018. This has corresponded with a 21.9% decrease in cost of Warfarin and INR testing from $7,493,898 to $5,855,804.

Conclusions: NOACs have become the drugs of choice for stroke prevention in non-valvular AF in Australia. While use of NOACs has increased cost to the government, cost of Warfarin and INR testing has declined and costs are expected to decrease further when NOAC patents expire in 2020.

http://dx.doi.org/10.1016/j.hlc.2019.06.174

174

This abstract has been withdrawn

http://dx.doi.org/10.1016/j.hlc.2019.06.175

175

Decrement Evoked Potential Mapping (DEEP) for Atrial Fibrillation Ablation

J. Fitzgerald1,2, A. May1, M. McGee3, J. Leitch7, S. Haldar2, A. Porta Sanchez2, S. Gizurarson4, K. Nanthakumar5, N. Jackson1

1 John Hunter Hospital, Newcastle, Australia
2 Royal Brompton and Harefield NHS Foundation Trust, United Kingdom
3 Cardiólogo interвенционista del Hospital Universitario Quirónsalud de Madrid, Madrid, Spain
4 Landspitali University Hospital, Iceland
5 Peter Munk Cardiac Centre, University Health Network, Toronto, Canada

Introduction: Giving an extra-stimulus to identify decrement evoked potentials (DEEPs) has been shown to identify targets for VT ablation. We sought to determine if this technique could be applied to AF ablation.

Methods: Patients undergoing AF ablation were prospectively enrolled. A voltage map of the left atrium was created in sinus rhythm and pulmonary vein isolation was performed. Following this a drive train and single extra-stimulus (at AERP+20 ms) were delivered from the proximal coronary sinus and left atrial appendage with the lasso at 8 left atrial and 5 right atrial positions. EGMs that delayed in timing on the lasso with the extra-stimulus were identified as DEEPs.

Results: 15 patients (11 M), 13 persistent AF, mean age 66 ± 9 years, mean LA size 28 ± 4 cm² were enrolled. Of 1340 EGMs examined, 13% were DEEPs (15% with CS pacing versus 10% LAA pacing, p = 0.01). The mean decrement seen was 26 ms. 85% of DEEPs were identified in sites with a normal EGM at baseline and 93% of DEEPs occurred in regions with normal voltage. There was no significant difference in the frequency of DEEPs at any particular site, however, 13.3% of DEEPs were seen in the RA and 21.3% in the LA (p = 0.005).

Conclusion: In this study, DEEPs were more common when pacing from the coronary sinus, more common within the left atrium and frequently occurred at regions with normal voltage. DEEPs may represent a novel target for atrial fibrillation ablation.

http://dx.doi.org/10.1016/j.hlc.2019.06.176