Advertisement
Heart, Lung and Circulation
Current Review| Volume 14, ISSUE 1, P13-18, March 2005

Endothelial Function Related to Vascular Tone in Cardiac Surgery

  • Guo-Wei He
    Correspondence
    Present address: Department of Surgery, The Chinese University of Hong Kong, Block B, 5A, Prince of Wales Hospital, Shatin, N.T., Hong Kong. Tel.: +852 2645 0519; fax: +852 2645 1762.
    Affiliations
    Department of Surgery, The Chinese University of Hong Kong & Wuhan Heart Institute, The Central Hospital, Wuhan, China

    Starr Academic Center, Providence Heart Institute, Department of Surgery, Oregon Health and Science University, Portland, OR, USA
    Search for articles by this author
      Vascular endothelium has multiple functions including regulating of vascular tone, preventing platelet aggregation, anti-proliferation, etc. An intact endothelial function is essential to the maintenance of an adequate vascular tone, to prevent platelet aggregation in the intimal surface of blood vessels, to prevent smooth muscle proliferation, and to prevent atherosclerosis.
      This review focuses on endothelial function related to the vascular tone in cardiac surgery. The review is composed by three sections. In the first section, normal endothelial function related to vascular tone is described. In the second section, coronary endothelial function related to cardiac arrest and cardioplegic exposure is reviewed. In the third section, the endothelial function in the coronary bypass grafts is summarised. It is particularly important to understand that coronary endothelial dysfunction may be one of the major causes of low perfusion of the myocardium after cardiac arrest or donor heart preservation. Further, endothelium plays a major role in the maintenance of vascular tone and in the long-term patency of CABG grafts. The characteristics of endothelium in arterial and venous grafts and the correlation to the long-term patency are now more understood. A number of methods have been suggested to protect endothelial function in either coronary circulation or in coronary artery bypass grafts during cardiac surgery but further investigations in this field are warranted.

      Keywords

      To read this article in full you will need to make a payment

      Purchase one-time access:

      Academic & Personal: 24 hour online accessCorporate R&D Professionals: 24 hour online access
      One-time access price info
      • For academic or personal research use, select 'Academic and Personal'
      • For corporate R&D use, select 'Corporate R&D Professionals'

      Subscribe:

      Subscribe to Heart, Lung and Circulation
      Already a print subscriber? Claim online access
      Already an online subscriber? Sign in
      Institutional Access: Sign in to ScienceDirect

      References

        • Flavahan N.A.
        • Vanhoutte P.M.
        Endothelial cell signaling and endothelial dysfunction.
        Am J Hypertens. 1995; 8: 28S-41S
        • Moncada S.
        • Gryglewski R.
        • Bunting S.
        • Vane J.R.
        An enzyme isolated from arteries transforms prostaglandin endoperoxides to an unstable substance that inhibits platelet aggregation.
        Nature. 1976; 263: 663-665
        • Furchgott R.F.
        • Zawadzki J.V.
        The obligatory role of endothelial cells in the relaxation of arterial smooth muscle by acetylcholine.
        Nature. 1980; 288: 373-376
        • Ignarro L.J.
        • Buga G.M.
        • Wood K.S.
        • Byrns R.E.
        • Chaudhuri G.
        Endothelium-derived relaxing factor produced and released from artery and vein is nitric oxide.
        Proc Natl Acad Sci USA. 1987; 84: 9265-9269
        • Nijhawan N.
        • Warltier D.C.
        Regulation of the cardiovascular system.
        in: Priebe H.J. Skarvan K. Cardiovascular physiology. BMJ Publishing Group, London2000: 230-232 (213–39)
        • Rapoport R.M.
        • Draznin M.B.
        • Murad F.
        Endothelium-dependent relaxation in rat aorta may be mediated through cyclic GMP-dependent protein phosphorylation.
        Nature. 1983; 306: 174-176
        • Feletou M.
        • Vanhoutte P.M.
        Endothelium-dependent hyperpolarization of canine coronary smooth muscle.
        Br J Pharmacol. 1988; 93: 515-524
        • Ge Z.D.
        • Zhang X.H.
        • Fung P.C.
        • He G.-W.
        Endothelium-dependent hyperpolarization and relaxation resistance to N(G)-nitro-l-arginine and indomethacin in coronary circulation.
        Cardiovasc Res. 2000; 46: 547-556
        • Vanhoutte P.M.
        Vascular biology. Old-timer makes a comeback.
        Nature. 1998; 396: 213
        • Beny J.
        Electrical coupling between smooth muscle cells and endothelial cells in pig coronary arteries.
        Pflugers Arch. 1997; 433: 364-367
      1. Yang, Ge ZD, Yang C-Q, Huang Y, He G-W. Bioassay of endothelium-derived hyperpolarizing factor with abolishment of nitric oxide and the role of gap junctions in the porcine coronary circulation. Drug Dev Res 2003;58:99–110.

        • Cohen R.A.
        • Vanhoutte P.M.
        Endothelium-dependent hyperpolarization. Beyond nitric oxide and cyclic GMP.
        Circulation. 1995; 92: 3337-3349
        • Saldanha C.
        • Hearse D.J.
        Coronary vascular responsiveness to 5-hydroxytryptamine before and after infusion of hyperkalemic crystalloid cardioplegic solution in the rat heart. Possible evidence of endothelial damage.
        J Thorac Cardiovasc Surg. 1989; 98: 783-787
        • Mankad P.S.
        • Chester A.H.
        • Yacoub M.H.
        Role of potassium concentration in cardioplegic solutions in mediating endothelial damage.
        Ann Thoracic Surg. 1991; 151: 89-93
        • Evora P.R.B.
        • Pearson P.J.
        • Schaff H.V.
        Crystalloid cardioplegia and hypothermia do not impair endothelium-dependent relaxation or damage vascular smooth muscle of epicardial coronary arteries.
        J Thorac Cardiovasc Surg. 1992; 104: 1365-1374
        • Dignan R.J.
        • Dyke C.M.
        • Abd-Elfattah A.S.
        • et al.
        Coronary artery endothelial cell and smooth muscle dysfunction after global myocardial ischemia.
        Ann Thoracic Surg. 1992; 53: 311-317
        • He G.-W.
        • Yang C.-Q.
        • Wilson G.J.
        • Rebeyka I.M.
        Tolerance of coronary endothelium and smooth muscle to hyperkalemia.
        Ann Thoracic Surg. 1994; 57: 682-688
        • He G.-W.
        • Yang C.-Q.
        • Rebeyka I.M.
        • Wilson G.J.
        Effect of neonatal endothelium and smooth muscle to hyperkalemic cardioplegic solutions.
        J Heart Lung Transplant. 1995; 14: 92-101
        • He G.-W.
        • Yang C.-Q.
        • Graier W.F.
        • Yang J.-A.
        Hyperkalemia alters EDHF-mediated hyperpolarization and relaxation in porcine coronary arteries.
        Am J Physiol. 1996; 271: H760-H767
        • He G.-W.
        • Yang C.-Q.
        Hyperkalemia alters endothelium-dependent relaxation through non-nitric oxide and non-cyclooxygenase pathway: a mechanism for coronary dysfunction due to cardioplegia.
        Ann Thoracic Surg. 1996; 61: 1394-1399
        • He G.-W.
        • Yang C.-Q.
        • Yang J.-A.
        Depolarizing cardiac arrest and EDHF-mediated hyperpolarization and relaxation in coronary arteries: the effect and mechanism.
        J Thorac Cardiovasc Surg. 1997; 113: 932-941
        • He G.-W.
        Hyperkalemia-exposure impairs EDHF-mediated endothelial function in the human coronary artery.
        Ann Thoracic Surg. 1997; 63: 84-87
        • He G.-W.
        • Yang C.-Q.
        Superiority of hyperpolarizing to depolarizing cardiaplegia in protection of coronary endothelial function.
        J Thorac Cardiovasc Surg. 1997; 114: 643-650
        • He G.-W.
        Coronary endothelial function in open heart surgery.
        Clin Exp Pharmacol Physiol. 1997; 24: 955-957
        • He G.-W.
        • Yang C.-Q.
        Impaired coronary endothelial function by cold storage with University of Wisconsin solution.
        J Thorac Cardiovasc Surg. 1998; 116: 122-130
        • Hashimoto K.
        • Pearson P.J.
        • Schaff H.V.
        • Carteir R.
        Endothelial cell dysfunction after ischemic arrest and reperfusion: a possible mechanism of myocardial injury during reflow.
        J Thorac Cardiovasc Surg. 1992; 102: 688-694
        • Hiramatsu T.
        • Forbess J.M.
        • Miura T.
        • et al.
        Effects of endothelin-1 and l-arginine after cold ischemia in Lamb hearts.
        Ann Thoracic Surg. 1996; 61: 36-400
        • Evora P.R.B.
        • Pearson P.J.
        • Schaff H.V.
        Crystalloid cardioplegia and hypothermia do not impair endothelium-dependent relaxation or damage vascular smooth muscle of epicardial coronary arteries.
        J Thorac Cardiovasc Surg. 1992; 104: 1365-1374
        • Lefer A.M.
        Attenuation of myocardial ischemia-reperfusion injury with nitric oxide replacement therapy.
        Ann Thoracic Surg. 1995; 60: 847-851
        • Sato H.
        • Zhao Z.Q.
        • McGee D.S.
        • et al.
        Supplemental L-arginine during cardioplegic arrest and reperfusion avoids regional postischemic injury.
        J Thorac Cardiovasc Surg. 1995; 110: 302-314
        • Giannella E.
        • Mochmann H.C.
        • Levi R.
        Ischemic preconditioning prevents the impairment of hypoxic coronary vasodilatation caused by ischemia/reperfusion: role of adenosine A1/A3 and bradykinin B2 receptor activation.
        Circ Res. 1997; 81: 415-422
        • Siegel G.
        • Ruckborn K.
        • Schnalke F.
        • Grote J.
        Membrane physiological reactions of human arteriosclerotic coronary arteries to hypoxia.
        J Cardiovasc Pharmacol. 1992; 20: 217-220
        • Yang Q.
        • Liu Y.C.
        • Zou W.
        • Yim A.P.
        • He G.-W.
        Protective effect of magnesium on the endothelial function mediated by endothelium-derived hyperpolarizing factor in coronary arteries during cardioplegic arrest in a porcine model.
        J Thorac Cardiovasc Surg. 2002; 124: 361-370
        • Ge Z.D.
        • He G.-W.
        Altered endothelium-derived hyperpolarizing factor-mediated endothelial function in coronary microarteries by St Thomas’ Hospital solution.
        J Thorac Cardiovasc Surg. 1999; 118: 173-180
        • Ge Z.D.
        • He G.-W.
        Comparison of University of Wisconsin and St Thomas’ Hospital solutions on endothelium-derived hyperpolarizing factor-mediated function in coronary micro-arteries.
        Transplantation. 2000; 70: 22-31
      2. Yang Q, Zhang RZ, Yim APC, He G-W. HTK solution maximally preserves the endothelium-derived hyperpolarizing factor-mediated function during heart preservation: Comparison with University of Wisconsin solution. J Heart Lung Transplant (in press).

      3. He G-W, Ge ZD, Yim APC, Yang Q, Zhang RZ. Electrophysiological and mechanical evidence of superiority of hyperpolarizing vs. depolarizing cardioplegia in protection of EDHF-mediated endothelial function: a study in coronary resistance arteries. J Thorac Cardiovasc Surg (in press).

        • Yang Q.
        • Zhang R.Z.
        • Yim A.P.C.
        • He G.-W.
        Effect of 11,12-epoxyeicosatrienoic acid (EET11,12) as additive to St. Thomas’ cardioplegia or University of Wisconsin solution on endothelium-derived hyperpolarizing factor-mediated function in coronary micro-arteries: influence of temperature and time.
        Ann Thoracic Surg. 2003; 76: 1623-1630
        • Ren Z.
        • Yang Q.
        • Floten H.S.
        • Furnary A.
        • Yim A.P.C.
        • He G.-W.
        ATP-sensitive potassium channel openers may mimic the effects of hypoxic preconditioning on the coronary artery.
        Ann Thoracic Surg. 2001; 71: 642-647
      4. Ren Z, Yang Q, Floten HS, and He G-W. Hypoxic preconditioning in coronary microarteries: role of EDHF and potassium channel openers. Ann Thoracic Surg 2001;2002:143–8.

        • Chambers D.J.
        • Astras G.
        • Takahashi A.
        • Manning A.S.
        • Braimbridge M.V.
        • Hearse D.J.
        Free radicals and cardioplegia: organic anti-oxidants as additives to the St Thomas’ Hospital cardioplegic solution.
        Cardiovasc Res. 1989; 23: 351-358
        • Sellke F.W.
        • Shafique T.
        • Ely D.L.
        • Weintraub R.M.
        Coronary endothelial injury after cardiopulmonary bypass and ischemic cardioplegia is mediated by oxygen-derived free radicals.
        Circulation. 1993; 88: II395-II400
        • Muraki S.
        • Morris C.D.
        • Budde J.M.
        • Zhao Z.Q.
        • Guyton R.A.
        • Vinten-Johansen J.
        Blood cardioplegia supplementation with the sodium–hydrogen ion exchange inhibitor cariporide to attenuate infarct size and coronary artery endothelial dysfunction after severe regional ischemia in a canine model.
        J Thorac Cardiovasc Surg. 2003; 125: 155-164
        • Keller M.W.
        • Geddes L.
        • Spotnitz W.
        • Kaul S.
        • Duling B.R.
        Microcirculatory dysfunction following perfusion with hyperkalemic, hypothermic, cardioplegic solutions and blood reperfusion. Effects of adenosine.
        Circulation. 1991; 84: 2485-2494
        • Wang Y.
        • Sunamori M.
        • Suzuki A.
        Effect of phosphodiesterase III-inhibitor (E-1020) adjunct to Bretschneider's HTK cardioplegic solution on myocardial preservation in rabbit heart.
        Thorac Cardiovasc Surg. 1996; 44: 167-172
        • Jovanovic S.
        • Jovanovic A.
        • Shen W.K.
        • Terzic A.
        Protective action of 17beta-estradiol in cardiac cells: implications for hyperkalemic cardioplegia.
        Ann Thoracic Surg. 1998; 66: 1658-1661
        • Nomura F.
        • Matsuda H.
        • Shirakura R.
        • Ohtani M.
        • Sawa Y.
        • Nakano S.
        • et al.
        Experimental evaluation of myocardial protective effect of prostacyclin analog (OP-41483) as an adjunct to cardioplegic solution.
        J Thorac Cardiovasc Surg. 1991; 101: 860-865
        • Standeven J.W.
        • Jellinek M.
        • Menz L.J.
        • Kolata R.J.
        • Barner H.B.
        Cold blood potassium diltiazem cardioplegia.
        J Thorac Cardiovasc Surg. 1984; 87: 201-212
        • Rosenkranz E.R.
        Substrate enhancement of cardioplegic solution: experimental studies and clinical evaluation.
        Ann Thoracic Surg. 1995; 60: 797-800
        • He G.-W.
        Arterial grafts for coronary surgery: vasospasm and patency rate (Editorial).
        J Thorac Cardiovasc Surg. 2001; 121: 431-433
        • Luscher T.F.
        • Diederich D.
        • Siebenmann R.
        • et al.
        Difference between endothelium-dependent relaxation in arterial and in venous coronary bypass grafts.
        N Engl J Med. 1988; 25 (319): 462-467
        • Liu Z.G.
        • Ge Z.D.
        • He G.-W.
        Difference in endothelium-derived hyperpolarizing factor-mediated hyperpolarization and nitric oxide release between human internal mammary artery and saphenous vein.
        Circulation. 2000; 102: III-296-III-301
        • He G.-W.
        • Yang C.-Q.
        Comparison among arterial grafts and coronary artery. An attempt at functional classification.
        J Thorac Cardiovasc Surg. 1995; 109: 707-715
        • He G.-W.
        • Acuff T.E.
        • Yang C.-Q.
        • Ryan W.H.
        • Mack M.J.
        Functional comparison between the human inferior epigastric artery and internal mammary artery: similarities and differences.
        J Thorac Cardiovasc Surg. 1995; 109: 13-20
        • He G.-W.
        • Liu Z.G.
        Comparison of nitric oxide release and endothelium-derived hyperpolarizing factor-mediated hyperpolarization between human radial and internal mammary arteries.
        Circulation. 2001; 104: I-344-I-349
      5. He G-W, editor. Arterial grafts for coronary artery bypass surgery. Springer-Verlag Singapore Pte. Ltd; 1999. p. 25–69.