Heart, Lung and Circulation

Perspectives in Interventional Electrophysiology in Children and those with Congenital Heart Disease

Electrophysiology in Children
      Recent developments in paediatric pacing and ablation of arrhythmia substrate have been characterised by adoption and modification of techniques used in adults. Infants, small children and those of all ages with congenital heart disease are a patient group with a higher risk profile needing a special approach.
      Current success rates for catheter ablation are high and major complication rates are low. Important issues with respect to long-term outcome include questions about coronary injury, long-term effects of radiation exposure and late recurrence.
      Non-fluoroscopic electro-anatomical mapping systems (3D systems), cryo-ablation and remote navigation are techniques recently improved such that it is possible to potentially reduce fluoroscopy and complications.
      Pacing in young children and congenital heart disease often warrants an epicardial approach to avoid embolism, venous occlusion and lead failure related to growth. Defibrillator and resynchronisation therapy are increasingly important tools to reduce mortality, although the indications are not as clear as in adult patients without congenital heart disease.


      To read this article in full you will need to make a payment

      Purchase one-time access:

      Academic & Personal: 24 hour online accessCorporate R&D Professionals: 24 hour online access
      One-time access price info
      • For academic or personal research use, select 'Academic and Personal'
      • For corporate R&D use, select 'Corporate R&D Professionals'


      Subscribe to Heart, Lung and Circulation
      Already a print subscriber? Claim online access
      Already an online subscriber? Sign in
      Institutional Access: Sign in to ScienceDirect


        • Gillette P.
        • Garson A.
        • Porter C.
        • Ott D.
        • McVey P.
        • Zinner A.
        • et al.
        Junctional automatic ectopic tachycardia: new proposed treatment by transcatheter His bundle ablation.
        Am Heart J. 1983; 106: 619-623
        • Van Hare G.F.
        • Velvis H.
        • Langberg J.
        Successful transcatheter ablation of congenital junctional ectopic tachycardia in a ten-month-old infant using radiofrequency energy.
        Pacing Clin Electrophysiol. 1990; 13: 730-735
        • Kugler J.
        • Danford D.
        • Houston K.
        • Felix G.
        Pediatric radiofrequency catheter ablation registry success, fluoroscopy time, and complication rate for supraventricular tachycardia: comparison of early and recent eras.
        J Cardiovasc Electrophysiol. 2002; 13: 336-341
        • Clay M.
        • Campbell R.
        • Strieper M.
        • Frias P.
        • Stevens M.
        • Mahle W.
        Long-term risk of fatal malignancy following pediatric radiofrequency ablation.
        Am J Cardiol. 2008; 102: 913-915
        • Blaufox A.
        • Saul J.P.
        Acute coronary artery stenosis during slow pathway ablation for atrioventricular nodal reentrant tachycardia in a child.
        J Cardiovasc Electrophysiol. 2004; 15: 97-100
        • Ouali S.
        • Anselme F.
        • Savoure A.
        • Cribier A.
        Acute coronary occlusion during radiofrequency catheter ablation of typical atrial flutter.
        J Cardiovasc Electrophysiol. 2002; 13: 1047-1049
      1. Dinckal H, Yucel O, Kirilmaz A, Karaca M, Kilicaslan F, Dokumaci B. Left anterior descending coronary artery occlusion after left lateral free wall accessory pathway ablation: what is the possible mechanism? Eurospace 2003;5(July (3)):263–6.

        • Schneider H.E.
        • Kriebel T.
        • Gravenhorst V.D.
        • Paul T.
        Incidence of coronary artery injury immediately after catheter ablation for supraventricular tachycardias in infants and children.
        HRTHM. 2009; 6: 461-467
        • Gaita F.
        • Caponi D.
        • Pianelli M.
        • Scaglione M.
        • Toso E.
        • Cesarani F.
        • et al.
        Radiofrequency catheter ablation of atrial fibrillation: a cause of silent thromboembolism? Magnetic resonance imaging assessment of cerebral thromboembolism in patients undergoing ablation of atrial fibrillation.
        Circulation. 2010; 122: 1667-1673
        • Deneke T.
        • Shin D.-I.
        • Balta O.
        • Bünz K.
        • Fassbender F.
        • Mügge A.
        • et al.
        Postablation asymptomatic cerebral lesions: long-term follow-up using magnetic resonance imaging.
        HRTHM. 2011; 8: 1705-1711
        • Mandapati R.
        • Berul C.I.
        • Triedman J.K.
        • Alexander M.E.
        • Walsh E.P.
        Radiofrequency catheter ablation of septal accessory pathways in the pediatric age group.
        Am J Cardiol. 2003; 92: 947-950
        • Blaufox A.
        • Paul T.
        • Saul J.P.
        Radiofrequency catheter ablation in small children: relationship of complications to application dose.
        Pacing Clin Electrophysiol. 2004; 27: 224-229
        • Gage A.A.
        • Baust J.
        Mechanisms of tissue injury in cryosurgery.
        Cryobiology. 1998; 37: 171-186
        • Khairy P.
        • Chauvet P.
        • Lehmann J.
        • Lambert J.
        • Macle L.
        • Tanguay J.-F.
        • et al.
        Lower incidence of thrombus formation with cryoenergy versus radiofrequency catheter ablation.
        Circulation. 2003; 107: 2045-2050
        • Deisenhofer I.
        • Zrenner B.
        • Yin Y.-H.
        • Pitschner H.-F.
        • Kuniss M.
        • Grossmann G.
        • et al.
        Cryoablation versus radiofrequency energy for the ablation of atrioventricular nodal reentrant tachycardia (the CYRANO Study): results from a large multicenter prospective randomized trial.
        Circulation. 2010; 122: 2239-2245
        • Collins K.K.
        • Dubin A.M.
        • Chiesa N.A.
        • Avasarala K.
        • Van Hare G.F.
        Cryoablation versus radiofrequency ablation for treatment of pediatric atrioventricular nodal reentrant tachycardia: initial experience with 4-mm cryocatheter.
        HRTHM. 2006; 3: 564-570
        • Schneider H.
        • Jakobi J.
        • Kriebel T.
        • Schill M.
        • Schillinger W.
        • Stahl M.
        • et al.
        Double cryoenergy application (freeze–thaw–freeze) at growing myocardium: intracoronary ultrasound and coronary artery angiography studies late after energy application.
        Heart Rhythm J. 2011; 8: S46
        • Khairy P.
        • Guerra P.G.
        • Rivard L.
        • Tanguay J.-F.
        • Landry E.
        • Guertin M.-C.
        • et al.
        Enlargement of catheter ablation lesions in infant hearts with cryothermal versus radiofrequency energy: an animal study.
        Circ Arrhythm Electrophysiol. 2011; 4: 211-217
        • Dorostkar P.C.
        • Cheng J.
        • Scheinman M.M.
        Electroanatomical mapping and ablation of the substrate supporting intraatrial reentrant tachycardia after palliation for complex congenital heart disease.
        Pacing Clin Electrophysiol. 1998; 21: 1810-1819
        • de Groot N.M.S.
        • Zeppenfeld K.
        • Wijffels M.C.
        • Chan W.K.
        • Blom N.A.
        • Van der Wall E.E.
        • et al.
        Ablation of focal atrial arrhythmia in patients with congenital heart defects after surgery: role of circumscribed areas with heterogeneous conduction.
        HRTHM. 2006; 3: 526-535
        • Pflaumer A.
        • Deisenhofer I.
        • Hausleiter J.
        • Zrenner B.
        Mapping and ablation of atypical flutter in congenital heart disease with a novel three-dimensional mapping system (Carto Merge).
        Europace. 2006; 8: 138-139
        • Triedman J.
        Atypical atrial tachycardias in patients with congenital heart disease.
        HRTHM. 2008; 5: 315-317
        • Zrenner B.
        • Dong J.
        • Schreieck J.
        • Ndrepepa G.
        • Meisner H.
        • Kaemmerer H.
        • et al.
        Delineation of intra-atrial reentrant tachycardia circuits after mustard operation for transposition of the great arteries using biatrial electroanatomic mapping and entrainment mapping.
        J Cardiovasc Electrophysiol. 2003; 14: 1302-1310
        • Miyake C.Y.
        • Mah D.Y.
        • Atallah J.
        • Oikle H.P.
        • Melgar M.L.
        • Alexander M.E.
        • et al.
        Nonfluoroscopic imaging systems reduce radiation exposure in children undergoing ablation of supraventricular tachycardia.
        HRTHM. 2011; 8: 519-525
        • Smith G.
        • Clark J.M.
        Elimination of fluoroscopy use in a pediatric electrophysiology laboratory utilizing three-dimensional mapping.
        Pacing Clin Electrophysiol. 2007; 30: 510-518
        • Pflaumer A.
        • Hessling G.
        • Luik A.
        • Wu J.
        • Zrenner B.
        Remote magnetic catheter mapping and ablation of permanent junctional reciprocating tachycardia in a seven-year-old child.
        J Cardiovasc Electrophysiol. 2007; 18: 882-885
        • Wu J.
        • Pflaumer A.
        • Deisenhofer I.
        • Hoppmann P.
        • Hess J.
        • Hessling G.
        Mapping of atrial tachycardia by remote magnetic navigation in postoperative patients with congenital heart disease.
        J Cardiovasc Electrophysiol. 2010; 21: 751-759
        • Epstein A.E.
        • DiMarco J.P.
        • Ellenbogen K.A.
        • Estes N.A.M.
        • Freedman R.A.
        • Gettes L.S.
        • et al.
        ACC/AHA/HRS 2008 guidelines for device-based therapy of cardiac rhythm abnormalities: executive summary: a report of the American College of Cardiology/American Heart Association Task Force on Practice Guidelines (writing committee to revise the ACC/AHA/NASPE 2002 guideline update for implantation of cardiac pacemakers and antiarrhythmia devices): developed in collaboration with the American Association for Thoracic Surgery and Society of Thoracic Surgeons.
        Circulation. 2008; 117: 2820-2840
        • Janousek J.
        • Gebauer R.A.
        • Abdul-Khaliq H.
        • Turner M.
        • Kornyei L.
        • Grollmuss O.
        • et al.
        Cardiac resynchronisation therapy in paediatric and congenital heart disease: differential effects in various anatomical and functional substrates.
        Heart. 2009; 95: 1165-1171
        • Rotstein A.
        • Davis A.
        • Kamberi S.
        • Scicluna D.
        • Koleff J.
        • Cheung M.
        • et al.
        QRS duration and long term benefit of cardiac resynchronisation therapy—a single paediatric centre experience.
        Heart Lung Circ. 2011; 20: S238
        • Silka M.J.
        • Rice M.J.
        Paradoxic embolism due to altered hemodynamic sequencing following transvenous pacing.
        Pacing Clin Electrophysiol. 1991; 14: 499-503
        • Tomaske M.
        • Breithardt O.A.
        • Bauersfeld U.
        Preserved cardiac synchrony and function with single-site left ventricular epicardial pacing during mid-term follow-up in paediatric patients.
        Europace. 2009; 11: 1168-1176
        • Triedman J.K.
        Children are not just small adults.
        HRTHM. 2010; 8: 29-30