Advertisement
Heart, Lung and Circulation

Right Ventricular Epicardial Vascularisation in Patients With Pulmonary Arterial Hypertension

Published:September 28, 2017DOI:https://doi.org/10.1016/j.hlc.2017.08.023

      Background

      Pulmonary arterial hypertension (PAH) leads to a haemodynamic overload and ischaemia of the right ventricle (RV), which are important triggers of an arterial growth. Thus, we aimed to assess whether patients with PAH have altered epicardial vasculature of the RV, and how it corresponds to RV haemodynamic stress.

      Methods

      We enrolled consecutive patients with PAH diagnosed in a single pulmonary hypertension centre, who underwent coronary angiography. The control group consisted of patients with normal coronary arteries. Artery branches from segments I–III of the right coronary artery (RCAB) and branches of the left coronary artery (LCAB) were assessed. The sum of the diameters of RCABs (RCAB_sum) was used as a marker of RV epicardial vascularisation. Linear regression models were used to investigate associations between the RCAB_sum and markers of RV dysfunction.

      Results

      We recruited 37 PAH patients (idiopathic, n = 25; associated with connective tissue disease, n = 12) and 37 control subjects of similar age (56 ± 18 vs. 56 ± 13 years, p = 0.99) and sex (73% vs. 73% of women, p = 0.99). Pulmonary arterial hypertension patients as compared with control subjects had more RCABs (7 [6–8] vs. 6 [5–7], p < 0.001) and increased RCAB_sum (9.4 [8.2–10.5] vs. 7.3 [6.6–7.40] mm; p < 0.001) although comparable LCAB count (4 [4–5] vs. 4 [4–5]; p = 0.50). In a stepwise multivariable linear regression model, RA area (β = 0.152 [0.062–0.242]; p = 0.002) and diastolic wall stress (β = 0.025 [0.005–0.045]; p = 0.02) were significant predictors of RCAB_sum (model R2 = 0.65; p < 0.0001).

      Conclusions

      Right ventricular epicardial vasculature is more extensive in PAH patients as compared with control subjects, and it is in linear relation to potential markers of RV diastolic dysfunction.

      Keywords

      To read this article in full you will need to make a payment

      Purchase one-time access:

      Academic & Personal: 24 hour online accessCorporate R&D Professionals: 24 hour online access
      One-time access price info
      • For academic or personal research use, select 'Academic and Personal'
      • For corporate R&D use, select 'Corporate R&D Professionals'

      Subscribe:

      Subscribe to Heart, Lung and Circulation
      Already a print subscriber? Claim online access
      Already an online subscriber? Sign in
      Institutional Access: Sign in to ScienceDirect

      References

        • Runo J.R.
        • Loyd J.E.
        Primary pulmonary hypertension.
        Lancet. 2003; 361: 1533-1544
        • Vonk-Noordegraaf A.
        • Haddad F.
        • Chin K.M.
        • Forfia P.R.
        • Kawut S.M.
        • Lumens J.
        • et al.
        Right heart adaptation to pulmonary arterial hypertension: Physiology and pathobiology.
        J Am Coll Cardiol. 2013; 62: D22-D33
        • Ryan J.J.
        • Huston J.
        • Kutty S.
        • Hatton N.D.
        • Bowman L.
        • Tian L.
        • et al.
        Right Ventricular Adaptation and Failure in Pulmonary Arterial Hypertension.
        Can J Cardiol. 2015; 31: 391-406
        • Ryan J.J.
        • Archer S.L.
        The right ventricle in pulmonary arterial hypertension: Disorders of metabolism, angiogenesis and adrenergic signaling in right ventricular failure.
        Circ Res. 2014; 115: 176-188
        • van de Veerdonk M.C.
        • Bogaard H.J.
        • Voelkel N.F.
        The right ventricle and pulmonary hypertension.
        Heart Fail Rev. 2016; 21: 259-271
        • Howard L.S.
        Prognostic factors in pulmonary arterial hypertension: assessing the course of the disease.
        Eur Respir Rev. 2011; 20: 236-242
        • van de Veerdonk M.C.
        • Kind T.
        • Marcus J.T.
        • Mauritz G.-J.
        • Heymans M.W.
        • Bogaard H.-J.
        • et al.
        Progressive Right Ventricular Dysfunction in Patients With Pulmonary Arterial Hypertension Responding to Therapy.
        J Am Coll Cardiol. 2011; 58: 2511-2519
        • Gómez A.
        • Bialostozky D.
        • Zajarias A.
        • Santos E.
        • Palomar A.
        • Martínez M.L.
        • et al.
        Right ventricular ischemia in patients with primary pulmonary hypertension.
        J Am Coll Cardiol. 2001; 38: 1137-1142
        • Rakusan K.
        • Flanagan M.F.
        • Geva T.
        • Southern J.
        • Van Praagh R.
        Morphometry of human coronary capillaries during normal growth and the effect of age in left ventricular pressure-overload hypertrophy.
        Circulation. 1992; 86: 38-46
        • Kaufmann P.
        • Vassalli G.
        • Lupi-Wagner S.
        • Jenni R.H.O.
        Coronary artery dimensions in primary and secondary left ventricular hypertrophy.
        J Am Coll Cardiol. 1996; 28: 745-750
        • Bogaard H.J.
        • Natarajan R.
        • Henderson S.C.
        • Long C.S.
        • Kraskauskas D.
        • Smithson L.
        • et al.
        Chronic pulmonary artery pressure elevation is insufficient to explain right heart failure.
        Circulation. 2009; 120: 1951-1960
        • Piao L.
        • Fang Y.H.
        • Parikh K.
        • Ryan J.J.
        • Toth P.T.
        • Archer S.L.
        Cardiac glutaminolysis: A maladaptive cancer metabolism pathway in the right ventricle in pulmonary hypertension.
        J Mol Med. 2013; 91: 1185-1197
        • Graham B.B.
        • Koyanagi D.
        • Kandasamy B.
        • Tuder R.M.
        Right Ventricle Vasculature in Human Pulmonary Hypertension Assessed by Stereology.
        Am J Respir Crit Care Med. 2017; (rccm.201702-0425LE)https://doi.org/10.1164/rccm.201702-0425LE
        • Galiè N.
        • Hoeper M.
        • Humbert M.M.
        • Torbicki A.
        • Vachiery J.L.
        • Barbera J.A.
        • et al.
        Guidelines for the diagnosis and treatment of pulmonary hypertension: The Task Force for the Diagnosis and Treatment of Pulmonary Hypertension of the European Society of Cardiology (ESC) and the European Respiratory Society (ERS).
        Eur Heart J. 2009; 30: 2493-2537
        • Galiè N.
        • Humbert M.
        • Vachiery J.-L.
        • Gibbs S.
        • Lang I.
        • Torbicki A.
        • et al.
        2015 ESC/ERS Guidelines for the diagnosis and treatment of pulmonary hypertension.
        Eur Heart J. 2015; (ehv317)
        • Zahorska-Markiewicz B.
        • Podolec P.
        • Kopec G.
        • Drygas W.
        • Godycki-Cwirko M.
        • Opala G.
        • et al.
        Polish Forum for Prevention Guidelines on overweight and obesity.
        Kardiol Pol. 2008; 66: 594-596
        • Kopeć G.
        • Podolec P.
        • Podolec J.
        • Rubiś P.
        • Żmudka K.
        • Tracz W.
        Atherosclerosis progression affects the relationship between endothelial function and aortic stiffness.
        Atherosclerosis. 2009; 204: 250-254
        • American Diabetes Association
        Diagnosis and Classification of Diabetes Mellitus.
        Diabetes Care. 2010; 33: S62-S69
        • Kozek E.
        • Podolec P.
        • Kopec G.
        • Pajak A.
        • Tykarski A.
        • Zdrojewski T.
        • et al.
        Polish Forum for Prevention Guidelines on Diabetes.
        Kardiol Pol. 2008; 66: 1020-1023
        • Kawecka-Jaszcz K.
        • Jankowski P.
        • Podolec P.
        • Kopec G.
        • Naruszewicz M.
        • Opala G.
        • et al.
        Polish forum for prevention guidelines on smoking.
        Kardiol Pol. 2008; 66: 125-126
        • Haddad F.
        • Hunt S.A.
        • Rosenthal D.N.
        • Murphy D.J.
        Right Ventricular Function in Cardiovascular Disease, Part I: Anatomy, Physiology, Aging, and Functional Assessment of the Right Ventricle.
        Circulation. 2008; 117: 1436-1448
        • Kurzyna M.
        • Araszkiewicz A.
        • Blaszczak P.
        • Grabka M.
        • Hawranek M.
        • Kopec G.
        • et al.
        Summary of recommendations for the haemodynamic and angiographic assessment of the pulmonary circulation. Joint statement of the Polish Cardiac Society’s Working Group on Pulmonary Circulation and Association of Cardiovascular Interventions.
        Kardiol Pol. 2015; 73: 63-68
        • Miszalski-Jamka T.
        • Klimeczek P.
        • Tomala M.
        • Krupiski M.
        • Zawadowski G.
        • Noelting J.
        • et al.
        Extent of RV dysfunction and myocardial infarction assessed by CMR are independent outcome predictors early after STEMI treated with primary angioplasty.
        JACC Cardiovasc Imaging. 2010; 3: 1237-1246
        • Kopeć G.
        • Tyrka A.
        • Miszalski-Jamka T.
        • Sobień M.
        • Waligóra M.
        • Brózda M.
        • et al.
        Electrocardiogram for the diagnosis of right ventricular hypertrophy and dilation in idiopathic pulmonary arterial hypertension.
        Circ J. 2012; 76: 1744-1749
        • Hudsmith L.E.
        • Petersen S.E.
        • Francis J.M.
        • Robson M.D.
        • Neubauer S.
        Normal human left and right ventricular and left atrial dimensions using steady state free precession magnetic resonance imaging.
        J Cardiovasc Magn Reson. 2005; 7: 775-782
        • Kopeć G.
        • Moertl D.
        • Miszalski-Jamka T.
        • Waligóra M.
        • Tyrka A.
        • Sarnecka A.
        • et al.
        Left ventricular mass is preserved in patients with idiopathic pulmonary arterial hypertension and Eisenmengerćs syndrome.
        Heart Lung Circ. 2014; 23: 454-461
        • Maceira A.M.
        • Cosín-Sales J.
        • Roughton M.
        • Prasad S.K.
        • Pennell D.J.
        Reference right atrial dimensions and volume estimation by steady state free precession cardiovascular magnetic resonance.
        J Cardiovasc Magn Reson. 2013; 15: 29
        • Arts T.
        • Bovendeerd P.H.
        • Prinzen F.W.
        • Reneman R.S.
        Relation between left ventricular cavity pressure and volume and systolic fiber stress and strain in the wall.
        Biophys J. 1991; 59: 93-102
        • Wong Y.Y.
        • Westerhof N.
        • Ruiter G.
        • Lubberink M.
        • Raijmakers P.
        • Knaapen P.
        • et al.
        Systolic pulmonary artery pressure and heart rate are main determinants of oxygen consumption in the right ventricular myocardium of patients with idiopathic pulmonary arterial hypertension.
        Eur J Heart Fail. 2011; 13: 1290-1295
        • Alter P.
        • Koczulla A.R.
        • Nell C.
        • Figiel J.H.
        • Vogelmeier C.F.
        • Rominger M.B.
        Wall stress determines systolic and diastolic function–Characteristics of heart failure.
        Int J Cardiol. 2016; 202: 685-693
        • Bowers D.
        Medical Statistics from Scratch: An Introduction for Health Professionals.
        2nd Edition. John Wiley & Sons Ltd, Chichester2008
        • Carmeliet P.
        • Jain R.K.
        Molecular mechanisms and clinical applications of angiogenesis.
        Nature. 2011; 473: 298-307
        • Schaper W.
        Collateral circulation: Past and present.
        Basic Res Cardiol. 2009; 104: 5-21
        • van Wolferen S.A.
        • Marcus J.T.
        • Westerhof N.
        • Spreeuwenberg M.D.
        • Marques K.M.J.
        • Bronzwaer J.G.F.
        • et al.
        Right coronary artery flow impairment in patients with pulmonary hypertension.
        Eur Heart J. 2007; 29: 120-127
        • Carmeliet P.
        Manipulating angiogenesis in medicine.
        J Intern Med. 2004; 255: 538-561
        • Kozakova M.
        • Paterni M.
        • Bartolomucci F.
        • Morizzo C.
        • Rossi G.
        • Galetta F.
        • et al.
        Epicardial Coronary Artery Size in Hypertensive and Physiologic Left Ventricular Hypertrophy.
        Am J Hypertens. 2007; 20: 279-284
        • Cuspidi C.
        • Lonati L.
        • Sampieri L.
        • Valagussa L.
        • Michev I.
        • Leonetti G.
        • et al.
        Lack of correlation between left ventricular mass and diameter of left coronary artery main trunk in hypertensive patients.
        Am J Hypertens. 1999; 12: 1163-1168
        • Leung W.H.
        • Stadius M.L.
        • Alderman E.L.
        Determinants of normal coronary artery dimensions in humans.
        Circulation. 1991; 84: 2294-2306
        • Sutendra G.
        • Dromparis P.
        • Paulin R.
        • Zervopoulos S.
        • Haromy A.
        • Nagendran J.
        • et al.
        A metabolic remodeling in right ventricular hypertrophy is associated with decreased angiogenesis and a transition from a compensated to a decompensated state in pulmonary hypertension.
        J Mol Med. 2013; 91: 1315-1327
        • Berry C.
        • L’Allier P.L.
        • Grégoire J.
        • Lespérance J.
        • Levesque S.
        • Ibrahim R.
        • et al.
        Comparison of Intravascular Ultrasound and Quantitative Coronary Angiography for the Assessment of Coronary Artery Disease Progression.
        Circulation. 2007; : 115
        • Doutreleau S.
        • Canuet M.
        • Enache I.
        • Di Marco P.
        • Lonsdorfer E.
        • Oswald-Mammoser M.
        • et al.
        Right Heart Hemodynamics in Pulmonary Hypertension—An Echocardiography and Catheterization Study.
        Circ J. 2016; 80: 2019-2025
        • Seiler C.
        • Kirkeeide R.L.
        • Gould K.L.
        Basic structure-function relations of the epicardial coronary vascular tree. Basis of quantitative coronary arteriography for diffuse coronary artery disease.
        Circulation. 1992; 85: 1987-2003