Advertisement
Heart, Lung and Circulation

The Future of Open Heart Surgery in the Era of Robotic and Minimal Surgical Interventions

      It has been over two decades since the very first robotic cardiac surgery was performed. Over the years, there has been an increase in the demand for less invasive cardiac surgical techniques. Developments in technology and engineering have provided an opportunity for robotic surgery to be applied to a variety of cardiac procedures, including coronary revascularisation, mitral valve surgery, atrial fibrillation ablation, and others. In coronary revascularisation, it is becoming more widely used in single vessel, as well as hybrid coronary artery approaches. Currently, several international centres are specialising in a totally endoscopic coronary artery bypass surgery involving multiple vessels. Mitral valve and other intracardiac pathologies such as atrial septal defect and intracardiac tumour are also increasingly being addressed robotically. Even though some studies have shown good results with robot-assisted cardiac surgery, there are still concerns about safety, cost and clinical efficacy. There are also limitations and additional challenges with the management of cardiopulmonary bypass and myocardial protection during robotic surgery. Implementing novel strategies to manage these challenges, together with careful patient selection can go a long way to producing satisfactory results. This review examines the current evidence behind robotic surgery in various aspects of cardiac surgery.

      Keywords

      To read this article in full you will need to make a payment

      Purchase one-time access:

      Academic & Personal: 24 hour online accessCorporate R&D Professionals: 24 hour online access
      One-time access price info
      • For academic or personal research use, select 'Academic and Personal'
      • For corporate R&D use, select 'Corporate R&D Professionals'

      Subscribe:

      Subscribe to Heart, Lung and Circulation
      Already a print subscriber? Claim online access
      Already an online subscriber? Sign in
      Institutional Access: Sign in to ScienceDirect

      References

        • Bush B.
        • Nifong L.W.
        • Chitwood Jr., W.R.
        Robotics in cardiac surgery: past, present, and future.
        Rambam Maimonides Med J. 2013; 4: e0017
        • Rodriguez E.
        • Nifong L.W.
        • Bonatti J.
        • Casula R.
        • Falk V.
        • Folliguet T.A.
        • et al.
        Pathway for surgeons and programs to establish and maintain a successful robot-assisted adult cardiac surgery program.
        J Thorac Cardiovasc Surg. 2016; 152: 9-13
        • Dyer C.
        Robot assisted surgery is blamed for heart patient’s death.
        BMJ. 2018; 363: k4791
        • Carpentier A.
        • Loulmet D.
        • Carpentier A.
        • Le Bret E.
        • Haugades B.
        • Dassier P.
        • et al.
        Open heart operation under videosurgery and minithoracotomy. First case (mitral valvuloplasty) operated with success.
        C R Acad Sci III. 1996; 319: 219-223
        • Lee J.D.
        • Srivastava M.
        • Bonatti J.
        History and current status or robotic totally endoscopic coronary artery bypass.
        Circulation J. 2012; 76: 2058-2065
        • Alemzadeh H.
        • Raman J.
        • Leveson N.
        • Kalbarczyk A.
        • Iyer R.
        Adverse events in robotic surgery: a retrospective study of 14 years of FDA data.
        PLoS One. 2016; 11
      1. McGoogan C. Would you go under a robot surgeon’s knife? The Telegraph. Available via URL: https://www.telegraph.co.uk/health-fitness/body/would-go-robot-surgeons-knife/ [accessed 3/1/19].

      2. CMR Surgical. Versius Surgical robot system. Website. Available via URL: https://cmrsurgical.com/versius/ [accessed 3/1/19].

        • Woo Y.J.
        • Nacke E.A.
        Robotic minimally invasive mitral valve reconstruction yields less blood product transfusion and shorter length of stay.
        Surgery. 2006; 140: 263-267
        • Mihaljevic T.
        • Jarrett C.M.
        • Gillinov A.M.
        • Williams S.J.
        • DeVilliers P.A.
        • Stewart W.J.
        • et al.
        Robotic repair of posterior mitral valve prolapse versus conventional approaches: potential realized.
        J Thorac and Cardiovasc Surg. 2011; 141: 72-80
        • Wang S.
        • Xhou J.
        • Cai J.F.
        Traditional coronary artery bypass graft versus totally endoscopic coronary artery bypass graft or robot-assisted coronary artery bypass graft–meta-analysis of 16 studies.
        Eur Rev Med Pharmacol Sci. 2014; 18: 790-797
        • Chitwood W.R.
        Robotic cardiac surgery by 2013.
        Tex Heart Inst J. 2011; 38: 691-693
        • Cavallaro P.
        • Rhee A.J.
        • Chiang Y.
        • Itagaki S.
        • Seigeman M.
        • Chikwe J.
        In-hospital mortality and morbidity after robotic coronary artery surgery.
        J Cardiothoracic Vasc Anesth. 2015; 29: 27-31
        • Dhawan R.
        • Roberts J.D.
        • Wroblewski K.
        • Katz J.A.
        • Raman J.
        • Chaney M.A.
        Multivessel beating heart robotic myocardial revascularization increases morbidity and mortality.
        J Thoracic Cardiovasc Sur. 2012; 135: 1056-1061
        • Wiedemann D.
        • Bonaros N.
        • Schachner T.
        • Weidinger F.
        • Lehr E.
        • Vesely M.
        • Bonatti J.
        Surgical problems and complex procedures: issues for operative time in robotic totally endoscopic coronary artery bypass grafting.
        Acquir Cardiovasc Dis. 2011; 143: 639-647
        • Cheng N.
        • Gao C.
        • Yang M.
        • Wu Y.
        • Wang G.
        • Xiao C.
        Analysis of the learning curve for beating heart, totally endoscopic, coronary artery bypass grafting.
        J Thoracic Cardiovas Surg. 2014; 148: 1832-1836
        • Schachner T.
        • Bonaros N.
        • Wiedemann D.
        • Weidinger F.
        • Feuchtner G.
        • Friedrich G.
        • et al.
        Training surgeons to perform robotically assisted totally endoscopic coronary surgery.
        Ann Thoracic Surg. 2009; 88: 523-528
        • Bonaros N.
        • Schachner T.
        • Lehr E.
        • Kofler M.
        • Wiedemann D.
        • Hong P.
        • et al.
        Five hundred cases of robotic totally endoscopic coronary artery bypass grafting: predictors of success and safety.
        Anna Thoracic Surg. 2013; 95: 803-812
        • Christidis N.K.
        • Fox S.A.
        • Swinamer S.A.
        • Bagur R.
        • Sridhar K.
        • Lavi S.
        • et al.
        Reason and timing for conversion to sternotomy in robotic-assisted coronary artery bypass grating and patient outcomes.
        Innovations: Technol Tech Cardiothoracic Vasc Surg. 2018; 13: 423-427
        • Daniel W.T.
        • Puskas J.D.
        • Baio K.T.
        • Liberman H.A.
        • Devireddy C.
        • Finn A.
        • Halkos M.E.
        Lessons learned from robotic-assisted coronary artery bypass surgery: risk factors for conversion to median sternotomy.
        Innovations: Technol Tech Cardiothoracic Vasc Surg. 2012; 7: 323-327
        • Srivastava S.
        • Barrera R.
        • Quismundo S.
        One hundred sixty-four consecutive beating heart totally endoscopic coronary artery bypass cases without intraoperative conversion.
        Ann Thorac Surg. 2012; 94: 1463-1468
        • Kofler M.
        • Schachner T.
        • Reinstadler S.J.
        • Stastny L.
        • Dumfarth J.
        • Wiedemann D.
        • et al.
        Comparative analysis of perioperative and mid-term results of TECAB and MIDCAB for revascularization of anterior wall.
        Innovations: Technol Tech Cardiothoracic Vascular Surg. 2017; 12: 207-213
        • Leonard J.
        • Rahouma M.
        • Abouarab A.
        • Schwann A.
        • Scuderi G.
        • Lau C.
        • et al.
        Totally endoscopic coronary artery bypass surgery: a meta-analysis of the current evidence.
        Int J Cardiol. 2018; 261: 42-46
        • Wang S.
        • Zhou J.
        • Cai J.
        Traditional coronary artery bypass graft versus totally endoscopic coronary artery bypass graft or robot-assisted coronary artery bypass graft – meta-analysis of 16 studies.
        Eur Rev Med Pharmacol Sci. 2014; 18: 790-797
        • Leyvi G.
        • Schechter C.B.
        • Sehgal S.
        • Greenberg M.A.
        • Snyder M.
        • Forest S.
        • et al.
        Comparison of index hospitalization costs between robotic CABG and conventional CABG: implications for hybrid coronary revascularization.
        J Cardiothorac Vasc Anesth. 2016; 30: 12-18
        • Carpentier A.
        • Loulmet D.
        • Carpentier A.
        • et al.
        Open heart operation under videosurgery and minithoracotomy. First case (mitral valvuloplasty) operated with success.
        C R Acad Sci III. 1996; 319 (French.): 219-223
        • Navia J.L.
        • Cosgrove D.M.
        Minimally invasive mitral valve operations.
        Ann Thorac Surg. 1996; 62: 1542-1544
        • Falk V.
        • Autschbach R.
        • Krakor R.
        • et al.
        Computer-enhanced mitral valve surgery: toward a total endoscopic procedure.
        Semin Thorac Cardiovasc Surg. 1999; 11: 244-249
        • Nifong L.W.
        • Chitwood W.R.
        • Pappas P.S.
        • et al.
        Robotic mitral valve surgery: a United States multicenter trial.
        J Thorac Cardiovasc Surg. 2005; 129: 1395-1404
        • Murphy D.A.
        • Miller J.S.
        • Langford D.A.
        • Snyder A.B.
        Endoscopic robotic mitral valve surgery.
        J Thorac Cardiovasc Surg. 2006; 132: 776-781
        • Nifong L.W.
        • Rodriguez E.
        • Chitwood W.R.
        540 consecutive robotic mitral valve repairs including concomitant atrial fibrillation cryoablation.
        Ann Thorac Surg. 2012; 94 (discussion 43): 38-42
        • Suri R.M.
        • Burkhart H.M.
        • Daly R.C.
        • et al.
        Robotic mitral valve repair for all prolapse subsets using techniques identical to open valvuloplasty: establishing the benchmark against which percutaneous interventions should be judged.
        J Thorac Cardiovasc Surg. 2011; 142: 970-979
        • Mihaljevic T.
        • Pattakos G.
        • Gillinov A.M.
        • et al.
        Robotic posterior mitral leaflet repair: neochordal versus resectional techniques.
        Ann Thorac Surg. 2013; 95: 787-794
        • Gammie J.S.
        • Zhao Y.
        • Peterson E.D.
        • O’Brien S.M.
        • Rankin J.S.
        • Griffith B.P.
        J Maxwell Chamberlain Memorial Paper for adult cardiac surgery. Less-invasive mitral valve operations: trends and outcomes from the Society of Thoracic Surgeons Adult Cardiac Surgery Database.
        Ann Thorac Surg. 2010; 90 (1410. e1; discussion 1408–1410): 1401-1408
        • Mazine A.
        • Pellerin M.
        • Lebon J.-S.
        • Dionne P.-O.
        • Jeanmart H.
        • Bouchard D.
        Minimally invasive mitral valve surgery: influence of aortic clamping technique on early outcomes.
        Ann Thorac Surg. 2013; 96: 2116-2122
        • Rodriguez E.
        • Cook R.
        • Chu M.W.A.
        • Chitwood Jr., W.R.
        Minimally invasive Bi-Atrial cryomaze operation for atrial fibrillation.
        J Thorac Cardiovasc Surg. 2009; 14: 208-223
        • Pruitt J.C.
        • Lazzara R.R.
        • Dworkin G.H.
        • Badhwar V.
        • Kuma C.
        • Ebra G.
        Totally endoscopic ablation of lone atrial fibrillation: initial clinical experience.
        Ann Thorac Surg. 2006; 8: 1325-1330
        • Rillig A.
        • Schmidt B.
        • Biase L.
        • Lin T.
        • Leoni S.
        • Heeger C.H.
        Manual versus robotic catheter ablation for the treatment of atrial fibrillation: the man and machine trial.
        JACC: Clin Electrophysiol. 2017; 3: 884-886
        • Ullah W.
        • McLean A.
        • Hunter R.
        • Baker V.
        • Richmond L.
        • Cantor E.
        Randomized trial comparing robotic to manual ablation for atrial fibrillation.
        HeartRhythm. 2014; 11: 1862-1869
        • Amraoui A.
        • Labrousse L.
        • Sohal M.
        • Jansens J.
        • Berte B.
        • Derval N.
        Alternative to left ventricular lead implantation through the coronary sinus: 1-year experience with a minimally invasive and robotically guided approach.
        EU Eurpace. 2017; 19: 88-95
        • Derose J.J.
        • Balaram S.
        • Ro C.
        • Swistel D.G.
        • Steinberg J.S.
        • Joshi S.
        • Ashton R.C.
        Midterm follow-up of robotic biventricular pacing demonstrates excellent lead stability and improved response rates.
        Innovations (Phila). 2006; 1: 105-110
        • Kamath G.S.
        • Balaram S.
        • Choi A.
        • Kuteyeva O.
        • Garikipati N.V.
        • Steinberg J.S.
        • Mittal S.
        Long-term outcome of leads and patients following robotic epicardial left ventricular lead placement for cardiac resynchronization therapy.
        Pacing Clin Electrophysiol. 2011; 34: 235-240
        • Chu M.
        • Losenno K.
        • Fox S.
        • Adams C.
        • Al-Habib H.
        • Guo R.
        Clinical outcomes of minimally invasive endoscopic and conventional sternotomy approaches for atrial septal defect repair.
        Can J Surg. 2014; 57: 75-81
        • Argenziano M.
        • Mehmet C.
        • Kohmoto T.
        • Morgan J.
        • Dimitui J.
        • Mongero L.
        Totally endoscopic atrial septal defect repair with robotic assistance.
        Circulation. 2003; 108: 191-194
        • Owers C.E.
        • Vaughan P.
        • Braidley P.C.
        • Wilkinson G.A.
        • Locke T.J.
        • Cooper G.J.
        Atrial myxomas: a single unit’s experience in the modern era.
        Heart Surg Forum. 2011; 14: 105-109
        • Yang M.
        • Yao M.
        • Wang G.
        • Xiao C.
        • Wu Y.
        • Zhang H.
        • Gao C.
        Comparison of postoperative quality of life for patients who undergo atrial myxoma excision with robotically assisted versus conventional surgery.
        J Thorac and Cardiovasc Surg. 2015; 150: 152-157
        • Schilling J.
        • Engel A.
        • Hassan M.
        • Smith J.M.
        Robotic Excision of Atrial Myxoma.
        J Cardiac Surg. 2012; 27
        • Moss E.
        • Halkos M.E.
        • Miller J.S.
        • Murphy D.A.
        Comparison of endoscopic robotic versus sternotomy approach for the resection of left atrial tumors.
        Innovations (Phila). 2016; 11: 274-277
        • Suematsu Y.
        • Mora B.N.
        • Mihaljevic T.
        • del Nido P.J.
        Totally endoscopic robotic-assisted repair of patent ductus arteriosus and vascular ring in children.
        Ann Thorac Surg. 2005; 80: 2309-2313
        • Alima M.B.
        • Eynden F.V.
        • Preumont N.
        • Jansens J.L.
        Robotic-assisted surgical myotomy in a 27-year-old man with myocardial bridging of the left anterior descending coronary artery.
        Interact Cardiovasc Thorac Surg. 2010; 11: 185-187
      3. Balkhy HH, Lewis CTP, Kitahara H. Robot-assisted aortic valve surgery: state of the art and challenges for the future. 2018;14(4):1913.

        • Stevens L.M.
        • Rodriguez E.
        • Lehr E.J.
        • et al.
        Impact of timing and surgical approach on outcomes after mitral valve regurgitation operations.
        Ann Thorac Surg. 2012; 93: 1462-1468
        • Charland P.J.
        • Robbins T.
        • Rodriguez E.
        • et al.
        Learning curve analysis of mitral valve repair using telemanipulative technology.
        J Thorac Cardiovasc Surg. 2011; 142: 404-410
        • Kam J.K.
        • Cooray S.D.
        • Kam J.K.
        • et al.
        A cost-analysis study of robotic versus conventional mitral valve repair.
        Heart Lung Circ. 2010; 19: 413-418
        • Cheng W.
        • Fontana G.P.
        • De Robertis M.A.
        • et al.
        Is robotic mitral valve repair a reproducible approach?.
        J Thorac Cardiovasc Surg. 2010; 139: 628-633
        • Suri R.M.
        • Antiel R.M.
        • Burkhart H.M.
        • et al.
        Quality of Life after early mitral valve repair using conventional and robotic approaches.
        Ann Thorac Surg. 2012; 93: 761-769
        • Mihaljevic T.
        • Jarrett C.M.
        • Gillinov A.M.
        • et al.
        A novel running annuloplasty suture technique for robotically assisted mitral valve repair.
        J Thorac Cardiovasc Surg. 2010; 139: 1343-1344
        • Garikipati N.
        • Mittal S.
        • Chaudhry F.
        • Musat D.K.
        • Sichrovsky T.
        • Preminger M.
        Comparison of Endovascular Versus Epicardial Lead Placement for Resynchronization Therapy.
        Am J Cardiol. 2014; 133: 840-844
        • Bhamidipati C.M.
        • Mboumi W.
        • Seymour K.A.
        • Rolland R.
        • Dilip K.
        • Gopaldas R.R.
        Robotic-assisted or minithoracotomy incision for left ventricular lead placement: a single-surgeon, single-center experience.
        Innovations (Phila). 2012; 7: 208-212