Advertisement
Heart, Lung and Circulation

Combating Inflammation in Cardiovascular Disease

Published:October 07, 2020DOI:https://doi.org/10.1016/j.hlc.2020.09.003
      The role of inflammation in promoting atherosclerosis and subsequent cardiovascular disease is increasingly recognised, particularly after the publication of Anti-inflammatory Therapy with Canakinumab for Atherosclerotic Disease (CANTOS) and Colchicine Cardiovascular Outcomes (COLCOT) trials. It appears that specifically targeting the Nod-like receptor protein 3 (NLRP3) inflammasome—interleukin 1/interleukin 18—interleukin 6 pathway appears to be most beneficial in cardiovascular risk reduction. High sensitivity C-reactive protein (CRP) is a downstream biomarker of inflammation that can be used to monitor treatment. This article will discuss the role of inflammation in cardiovascular disease, the utility of high sensitivity C-reactive protein and treatments that target this inflammation. While further research is needed into the cost effectiveness and safety of newer agents, it remains an evolving approach to manage cardiovascular risk.

      Keywords

      To read this article in full you will need to make a payment

      Purchase one-time access:

      Academic & Personal: 24 hour online accessCorporate R&D Professionals: 24 hour online access
      One-time access price info
      • For academic or personal research use, select 'Academic and Personal'
      • For corporate R&D use, select 'Corporate R&D Professionals'

      Subscribe:

      Subscribe to Heart, Lung and Circulation
      Already a print subscriber? Claim online access
      Already an online subscriber? Sign in
      Institutional Access: Sign in to ScienceDirect

      References

        • Australian Bureau of Statistics
        Cause of death 2018. 2019.
        (Available at:)
        • Smith S.C.
        Current and future directions of cardiovascular risk prediction.
        Am J Cardiol. 2006; 97: 28A-32A
        • Aday A.W.
        • Ridker P.M.
        Targeting Residual Inflammatory Risk: A Shifting Paradigm for Atherosclerotic Disease.
        Front Cardiovasc Med. 2019; 28: 16
        • Ridker P.M.
        • Everett B.M.
        • Thuren T.
        • MacFadyen J.G.
        • Chang W.H.
        • Ballantyne C.
        • et al.
        Antiinflammatory therapy with Canakinumab for Atherosclerotic Disease.
        N Engl J Med. 2017; 377: 1119-1131
        • Pai J.K.
        • Pischon T.
        • Ma J.
        • Manson J.E.
        • Hankinson S.E.
        • Joshipura K.
        • et al.
        Inflammatory markers and the risk of coronary heart disease in men and women.
        N Engl J Med. 2004; 351: 2599-2610
        • Koenig W.
        • Lowel H.
        • Baumert J.
        • Meisinger C.
        C-reactive protein modulates risk prediction based on the Framingham Score: implications for future risk assessment: results from a large cohort study in southern Germany.
        Circulation. 2004; 109: 1349-1353
        • Pearson T.A.
        • Mensah G.A.
        • Alexander R.W.
        • Anderson J.L.
        • Cannon R.O.
        • Criqui M.
        • et al.
        Markers of inflammation and cardiovascular disease: application to clinical and public health practice: a statement for healthcare professionals from the Centers for Disease Control and Prevention and the American Heart Association.
        Circulation. 2003; 107: 499-511
        • Sabatine M.S.
        • Morrow D.A.
        • Jablonski K.A.
        • Rice M.M.
        • Warnica J.W.
        • Domanski M.J.
        • et al.
        Prognostic significance of the Centers for Disease Control/American Heart Association high-sensitivity C-reactive protein cut points for cardiovascular and other outcomes in patients with stable coronary artery disease.
        Circulation. 2007; 115: 1528-1536
        • Ridker P.M.
        • Rifai N.
        • Pfeffer M.A.
        • Sacks F.M.
        • Moye L.A.
        • Goldman S.
        • et al.
        Inflammation, pravastatin, and the risk of coronary events after myocardial infarction in patients with average cholesterol levels. Cholesterol and Recurrent Events (CARE) Investigators.
        Circulation. 1998; 98: 839-844
        • Singh T.P.
        • Morris D.R.
        • Smith S.
        • Moxon J.V.
        • Golledge J.
        Systematic Review and Meta-Analysis of the Association Between C-Reactive Protein and Major Cardiovascular Events in Patients with Peripheral Artery Disease.
        Eur J Vasc Endovasc Surg. 2017; 54: 220-233
        • Bos M.J.
        • Schipper C.M.
        • Koudstaal P.J.
        • Witteman J.C.
        • Hofman A.
        • Breteler M.M.
        High serum C-reactive protein level is not an independent predictor for stroke: the Rotterdam Study.
        Circulation. 2006; 114: 1591-1598
        • Ridker P.M.
        Clinician's Guide to Reducing Inflammation to Reduce Atherothrombotic Risk: JACC Review Topic of the Week.
        J Am Coll Cardiol. 2018; 72: 3320-3331
        • Libby P.
        • Ridker P.M.
        • Hansson G.K.
        • Leducq Transatlantic Network on Atherothrombosis
        Inflammation in atherosclerosis: from pathophysiology to practice.
        J Am Coll Cardiol. 2009; 54: 2129-2138
        • Latz E.
        • Xiao T.S.
        • Stutz A.
        Activation and regulation of the inflammasomes.
        Nat Rev Immunol. 2013; 13: 397-411
        • Swanson K.V.
        • Deng M.
        • Ting J.P.
        The NLRP3 inflammasome: molecular activation and regulation to therapeutics.
        Nat Rev Immunol. 2019; 19: 477-489
        • Libby P.
        Interleukin-1 beta as a target for atherosclerosis therapy: biological basis of CANTOS and Beyond.
        J Am Coll Cardiol. 2017; 70: 2278-2289
        • Zakynthinos E.
        • Pappa N.
        Inflammatory biomarkers in coronary artery disease.
        J Cardiol. 2009; 53: 317-333
        • Kuller L.H.
        • Tracy R.P.
        • Shaten J.
        • Meilahn E.N.
        Relation of C-reactive protein and coronary heart disease in the MRFIT nested case-control study. Multiple Risk Factor Intervention Trial.
        Am J Epidemiol. 1996; 144: 537-547
        • Buckley D.I.
        • Fu R.
        • Freeman M.
        • Rogers K.
        • Helfand M.
        C-reactive protein as a risk factor for coronary heart disease: a systematic review and meta-analyses for the U.S. Preventive Services Task Force.
        Ann Intern Med. 2009; 151: 483-495
        • Wensley F.
        • Gao P.
        • Burgess S.
        • Kaptoge S.
        • Di Angelantonio E.
        • et al.
        • C Reactive Protein Coronary Heart Disease Genetics Collaboration (CCGC)
        Association between C reactive protein and coronary heart disease: mendelian randomisation analysis based on individual participant data.
        BMJ. 2011; 342: d548
        • Lane T.
        • Wassef N.
        • Poole S.
        • Mistry Y.
        • Lachmann H.J.
        • Gillmore J.D.
        • et al.
        Infusion of pharmaceutical-grade natural human C-reactive protein is not proinflammatory in healthy adult human volunteers.
        Circ Res. 2014; 114: 672-676
        • Danesh J.
        • Wheeler J.G.
        • Hirschfield G.M.
        • Eda S.
        • Eiriksdottir G.
        • Rumley A.
        • et al.
        C-reactive protein and other circulating markers of inflammation in the prediction of coronary heart disease.
        N Engl J Med. 2004; 350: 1387-1397
        • Kaptoge S.
        • Di Angelantonio E.
        • Pennells L.
        • Wood A.M.
        • White I.R.
        • et al.
        • Emerging Risk Factors Collaboration
        C-reactive protein, fibrinogen, and cardiovascular disease prediction.
        N Engl J Med. 2012; 367: 1310-1320
        • Wilson P.W.
        • D'Agostino R.B.
        • Levy D.
        • Belanger A.M.
        • Silbershatz H.
        • Kannel W.B.
        Prediction of coronary heart disease using risk factor categories.
        Circulation. 1998; 97: 1837-1847
        • Kaptoge S.
        • Di Angelantonio E.
        • Lowe G.
        • Pepys M.B.
        • Thompson S.G.
        • et al.
        • Emerging Risk Factors Collaboration
        C-reactive protein concentration and risk of coronary heart disease, stroke, and mortality: an individual participant meta-analysis.
        Lancet. 2010; 375: 132-140
        • Cook N.R.
        • Buring J.E.
        • Ridker P.M.
        The effect of including C-reactive protein in cardiovascular risk prediction models for women.
        Ann Intern Med. 2006; 145: 21-29
        • Haverkate F.
        • Thompson S.G.
        • Pyke S.D.
        • Gallimore J.R.
        • Pepys M.B.
        Production of C-reactive protein and risk of coronary events in stable and unstable angina. European Concerted Action on Thrombosis and Disabilities Angina Pectoris Study Group.
        Lancet. 1997; 349: 462-466
        • Hashimoto H.
        • Kitagawa K.
        • Hougaku H.
        • Shimizu Y.
        • Sakaguchi M.
        • Nagai Y.
        • et al.
        C-reactive protein is an independent predictor of the rate of increase in early carotid atherosclerosis.
        Circulation. 2001; 104: 63-67
        • Di Napoli M.
        • Papa F.
        • Bocola V.
        C-reactive protein in ischemic stroke: an independent prognostic factor.
        Stroke. 2001; 32: 917-924
        • Ridker P.M.
        Clinical application of C-reactive protein for cardiovascular disease detection and prevention.
        Circulation. 2003; 107: 363-369
        • Yousuf O.
        • Mohanty B.D.
        • Martin S.S.
        • Joshi P.H.
        • Blaha M.J.
        • Nasir K.
        • et al.
        High-sensitivity C-reactive protein and cardiovascular disease: a resolute belief or an elusive link?.
        J Am Coll Cardiol. 2013; 62: 397-408
        • Ridker P.M.
        • Rifai N.
        • Clearfield M.
        • Downs J.R.
        • Weis S.E.
        • Miles J.S.
        • et al.
        Measurement of C-reactive protein for the targeting of statin therapy in the primary prevention of acute coronary events.
        N Engl J Med. 2001; 344: 1959-1965
        • Ridker P.M.
        • Hennekens C.H.
        • Buring J.E.
        • Rifai N.
        C-reactive protein and other markers of inflammation in the prediction of cardiovascular disease in women.
        N Engl J Med. 2000; 342: 836-843
        • Ridker P.M.
        • Cannon C.P.
        • Morrow D.
        • Rifai N.
        • Rose L.M.
        • McCabe C.H.
        • et al.
        C-reactive protein levels and outcomes after statin therapy.
        N Engl J Med. 2005; 352: 20-28
        • Nissen S.E.
        • Tuzcu E.M.
        • Schoenhagen P.
        • Crowe T.
        • Sasiela W.J.
        • Tsai J.
        • et al.
        Statin therapy, LDL cholesterol, C-reactive protein, and coronary artery disease.
        N Engl J Med. 2005; 352: 29-38
        • Oesterle A.
        • Laufs U.
        • Liao J.K.
        PleiotropicEffects of Statins on the Cardiovascular System.
        Circ Res. 2017; 120: 229-243
        • Ferro D.
        • Parrotto S.
        • Basili S.
        • Alessandri C.
        • Violi F.
        Simvastatin inhibits the monocyte expression of proinflammatory cytokines in patients with hypercholesterolemia.
        J Am Coll Cardiol. 2000; 36: 427-431
        • Ridker P.M.
        • JUPITER Study Group
        Rosuvastatin in the primary prevention of cardiovascular disease among patients with low levels of low-density lipoprotein cholesterol and elevated high-sensitivity C-reactive protein: rationale and design of the JUPITER trial.
        Circulation. 2003; 108: 2292-2297
        • Hao Y.
        • Zhang H.
        • Yang X.
        • Wang L.
        • Gu D.
        Effects of fibrates on C-reactive protein concentrations: a meta-analysis of randomized controlled trials.
        Clin Chem Lab Med. 2011; 50: 391-397
        • Tie C.
        • Gao K.
        • Zhang N.
        • Zhang S.
        • Shen J.
        • Xie X.
        • et al.
        Ezetimibe Attenuates Atherosclerosis Associated with Lipid Reduction and Inflammation Inhibition.
        PLoS One. 2015; 10: e0142430
        • Bohula E.A.
        • Giugliano R.P.
        • Cannon C.P.
        • Zhou J.
        • Murphy S.A.
        • White J.A.
        • et al.
        Achievement of dual low-density lipoprotein cholesterol and high-sensitivity C-reactive protein targets more frequent with the addition of ezetimibe to simvastatin and associated with better outcomes in IMPROVE-IT.
        Circulation. 2015; 132: 1224-1233
        • Roth E.M.
        • McKenney J.M.
        • Hanotin C.
        • Asset G.
        • Stein E.A.
        Atorvastatin with or without an antibody to PCSK9 in primary hypercholesterolemia.
        N Engl J Med. 2012; 367: 1891-1900
        • Cao Y.X.
        • Li S.
        • Liu H.H.
        • Li J.J.
        Impact of PCSK9 monoclonal antibodies on circulating hs-CRP levels: a systematic review and meta-analysis of randomised controlled trials.
        BMJ Open. 2018; 8: e022348
        • Cannon C.P.
        • Cariou B.
        • Blom D.
        • McKenney J.M.
        • Lorenzato C.
        • Pordy R.
        • et al.
        Efficacy and safety of alirocumab in high cardiovascular risk patients with inadequately controlled hypercholesterolaemia on maximally tolerated doses of statins: the ODYSSEY COMBO II randomized controlled trial.
        Eur Heart J. 2015; 36: 1186-1194
        • Miller M.
        • Ballantyne C.M.
        • Bays H.E.
        • Granowitz C.
        • Doyle R.T.
        • Juliano R.A.
        • et al.
        Effects of Icosapent Ethyl (Eicosapentaenoic Acid Ethyl Ester) on Atherogenic Lipid/Lipoprotein, Apolipoprotein, and Inflammatory Parameters in Patients With Elevated High-Sensitivity C-Reactive Protein (from the ANCHOR Study).
        Am J Cardiol. 2019; 124: 696-701
        • Bhatt D.L.
        • Steg P.G.
        • Miller M.
        • Brinton E.A.
        • Jacobson T.A.
        • Ketchum S.B.
        • et al.
        Cardiovascular Risk Reduction with Icosapent Ethyl for Hypertriglyceridemia.
        N Engl J Med. 2019; 380: 11-22
        • Rüster C.
        • Wolf G.
        Renin-angiotensin-aldosterone system and progression of renal disease.
        J Am Soc Nephrol. 2006; 17: 2985-2991
        • Walczak-Gałęzewska M.
        • Szulińska M.
        • Miller-Kasprzak E.
        • Pupek-Musialik D.
        • Bogdański P.
        The effect of nebivolol and ramipril on selected biochemical parameters, arterial stiffness, and circadian profile of blood pressure in young men with primary hypertension: a 12-week prospective randomized, open-label study trial.
        Medicine (Baltimore). 2018; 97: e11717
        • Schieffer B.
        • Bünte C.
        • Witte J.
        • Hoeper K.
        • Böger R.H.
        • Schwedhelm E.
        • et al.
        Comparative effects of AT1-antagonism and angiotensin-converting enzyme inhibition on markers of inflammation and platelet aggregation in patients with coronary artery disease.
        J Am Coll Cardiol. 2004; 44: 362-368
        • Fliser D.
        • Buchholz K.
        • Haller H.
        • EUropean Trial on Olmesartan and Pravastatin in Inflammation and Atherosclerosis (EUTOPIA) Investigators
        Antiinflammatory effects of angiotensin II subtype 1 receptor blockade in hypertensive patients with microinflammation.
        Circulation. 2004; 110: 1103-1107
        • Souverein P.C.
        • Berard A.
        • Van Staa T.P.
        • Cooper C.
        • Egberts A.C.
        • Leufkens H.G.
        • et al.
        Use of oral glucocorticoids and risk of cardiovascular and cerebrovascular disease in a population based case-control study.
        Heart. 2004; 90: 859-865
        • Wei L.
        • MacDonald T.M.
        • Walker B.R.
        Taking glucocorticoids by prescription is associated with subsequent cardiovascular disease.
        Ann Intern Med. 2004; 141: 764-770
        • Giugliano G.R.
        • Giugliano R.P.
        • Gibson C.M.
        • Kuntz R.E.
        Meta-analysis of corticosteroid treatment in acute myocardial infarction.
        Am J Cardiol. 2003; 91: 1055-1059
        • Welsh P.
        • Grassia G.
        • Botha S.
        • Sattar N.
        • Maffia P.
        Targeting inflammation to reduce cardiovascular disease risk: a realistic clinical prospect?.
        Br J Pharmacol. 2017; 174: 3898-3913
        • Agca R.
        • Heslinga S.C.
        • Rollefstad S.
        • Heslinga M.
        • McInnes I.B.
        • Peters M.J.
        • et al.
        EULAR recommendations for cardiovascular disease risk management in patients with rheumatoid arthritis and other forms of inflammatory joint disorders: 2015/2016 update.
        Ann Rheum Dis. 2017; 76: 17-28
        • Feldman M.
        • Jialal I.
        • Devaraj S.
        • Cryer B.
        Effects of low-dose aspirin on serum C-reactive protein and thromboxane B2 concentrations: a placebo-controlled study using a highly sensitive C-reactive protein assay.
        J Am Coll Cardiol. 2001; 37: 2036-2041
        • Goldfine A.B.
        • Fonseca V.
        • Jablonski K.A.
        • Chen Y.D.
        • Tipton L.
        • Staten M.A.
        • et al.
        Salicylate (salsalate) in patients with type 2 diabetes: a randomized trial.
        Ann Intern Med. 2013; 159: 1-12
        • Hauser T.H.
        • Salastekar N.
        • Schaefer E.J.
        • Desai T.
        • Goldfine H.L.
        • Fowler K.M.
        • et al.
        Effect of targeting inflammation with salsalate: the TINSAL-CVD randomized clinical trial on progression of coronary plaque in Overweight and obese patients using statins.
        JAMA Cardiol. 2016; 1: 413-423
        • Bhala N.
        • Emberson J.
        • Merhi A.
        • Abramson S.
        • Arber N.
        • et al.
        • Coxib and traditional NSAID Trialists' (CNT) Collaboration
        Vascular and upper gastrointestinal effects of non-steroidal anti-inflammatory drugs: meta-analyses of individual participant data from randomised trials.
        Lancet. 2013; 382: 769-779
        • Bogaty P.
        • Brophy J.M.
        • Noel M.
        • Boyer L.
        • Simard S.
        • Bertrand F.
        • et al.
        Impact of prolonged cyclooxygenase-2 inhibition on inflammatory markers and endothelial function in patients with ischemic heart disease and raised C-reactive protein: a randomized placebo-controlled study.
        Circulation. 2004; 110: 934-939
        • Monakier D.
        • Mates M.
        • Klutstein M.W.
        • Balkin J.A.
        • Rudensky B.
        • Meerkin D.
        • et al.
        Rofecoxib, a COX-2 inhibitor, lowers C-reactive protein and interleukin-6 levels in patients with acute coronary syndromes.
        Chest. 2004; 125: 1610-1615
        • Mukherjee D.
        • Nissen S.E.
        • Topol E.J.
        Risk of cardiovascular events associated with selective COX-2 inhibitors.
        JAMA. 2001; 286: 954-959
        • Bresalier R.S.
        • Sandler R.S.
        • Quan H.
        • Bolognese J.A.
        • Oxenius B.
        • Horgan K.
        • et al.
        Cardiovascular events associated with rofecoxib in a colorectal adenoma chemoprevention trial.
        N Engl J Med. 2005; 352: 1092-1102
        • Nussmeier N.A.
        • Whelton A.A.
        • Brown M.T.
        • Langford R.M.
        • Hoeft A.
        • Parlow J.L.
        • et al.
        Complications of the COX-2 inhibitors parecoxib and valdecoxib after cardiac surgery.
        N Engl J Med. 2005; 352: 1081-1091
        • Solomon S.D.
        • McMurray J.J.
        • Pfeffer M.A.
        • Wittes J.
        • Fowler R.
        • Finn P.
        • et al.
        Cardiovascular risk associated with celecoxib in a clinical trial for colorectal adenoma prevention.
        N Engl J Med. 2005; 352: 1071-1080
        • McAdam B.F.
        • Catella-Lawson F.
        • Mardini I.A.
        • Kapoor S.
        • Lawson J.A.
        • FitzGerald G.A.
        Systemic biosynthesis of prostacyclin by cyclooxygenase (COX)-2: the human pharmacology of a selective inhibitor of COX-2.
        Proc Natl Acad Sci U S A. 1999; 96: 272-277
        • Ridker P.M.
        • MacFadyen J.G.
        • Everett B.M.
        • Libby P.
        • Thuren T.
        • Glynn R.J.
        • et al.
        Relationship of C-reactive protein reduction to cardiovascular event reduction following treatment with canakinumab: a secondary analysis from the CANTOS randomised controlled trial.
        Lancet. 2018; 391: 319-328
        • Ridker P.M.
        • MacFadyen J.G.
        • Thuren T.
        • Libby P.
        Residual inflammatory risk associated with interleukin-18 and interleukin-6 after successful interleukin-1β inhibition with canakinumab: further rationale for the development of targeted anti-cytokine therapies for the treatment of atherothrombosis.
        Eur Heart J. 2020; 41: 2153-2163
        • Zomer E.
        • Liew D.
        • Tonkin A.
        • Trauer J.M.
        • Ademi Z.
        The cost-effectiveness of canakinumab for secondary prevention of cardiovascular disease: the Australian healthcare perspective.
        Int J Cardiol. 2019; 285: 1-5
        • Westlake S.L.
        • Colebatch A.N.
        • Baird J.
        • Kiely P.
        • Quinn M.
        • Choy E.
        • et al.
        The effect of methotrexate on cardiovascular disease in patients with rheumatoid arthritis: a systematic literature review.
        Rheumatology (Oxford). 2010; 49: 295-307
        • Ridker P.M.
        • Everett B.M.
        • Pradhan A.
        • MacFadyen J.G.
        • Solomon D.H.
        • Zaharris E.
        • et al.
        LowDose Methotrexate for the Prevention of Atherosclerotic events.
        N Engl J Med. 2019; 380: 752-762
        • White H.D.
        • Held C.
        • Stewart R.
        • Tarka E.
        • Brown R.
        • et al.
        • STABILITY Investigators
        Darapladib for preventing ischemic events in stable coronary heart disease.
        N Engl J Med. 2014; 370: 1702-1711
        • O'Donoghue M.L.
        • Braunwald E.
        • White H.D.
        • Lukas M.A.
        • Tarka E.
        • Steg P.G.
        • et al.
        Effect of darapladib on major coronary events after an acute coronary syndrome: the SOLID-TIMI 52 randomized clinical trial.
        JAMA. 2014; 312: 1006-1015
        • Martinon F.
        • Petrilli V.
        • Mayor A.
        • Tardivel A.
        • Tschopp J.
        Gout-associated uric acid crystals activate the NALP3 inflammasome.
        Nature. 2006; 440: 237-241
        • Martínez G.J.
        • Robertson S.
        • Barraclough J.
        • Xia Q.
        • Mallat Z.
        • Bursill C.
        • et al.
        Colchicine acutely suppresses local cardiac production of inflammatory cytokines in patients with an acute coronary syndrome.
        J Am Heart Assoc. 2015; 4: e002128
        • Robertson S.
        • Martínez G.J.
        • Payet C.A.
        • Barraclough J.Y.
        • Celermajer D.S.
        • Bursill C.
        • et al.
        Colchicine therapy in acute coronary syndrome patients acts on caspase-1 to suppress NLRP3 inflammasome monocyte activation.
        Clin Sci (Lond). 2016; 130: 1237-1246
        • Nidorf S.M.
        • Eikelboom J.W.
        • Budgeon C.A.
        • Thompson P.L.
        Low-dose colchicine for secondary prevention of cardiovascular disease.
        J Am Coll Cardiol. 2013; 61: 404-410
        • Vaidya K.
        • Arnott C.
        • Martínez G.J.
        • Ng B.
        • McCormack S.
        • Sullivan D.R.
        • et al.
        Colchicine therapy and plaque stabilization in patients with acute coronary syndrome: a CT coronary angiography study.
        JACC Cardiovasc Imaging. 2018; 11: 305-316
        • Tardif J.C.
        • Kouz S.
        • Waters D.D.
        • Bertrand O.F.
        • Diaz R.
        • Maggioni A.P.
        • et al.
        Efficacy and safety of low-dose colchicine after myocardial infarction.
        N Engl J Med. 2019; 381: 2497-2505
        • Curry S.J.
        • Krist A.H.
        • Owens D.K.
        • Barry M.J.
        • Caughey A.B.
        • et al.
        • US Preventive Services Task Force
        Risk Assessment for Cardiovascular Disease with Nontraditional Risk Factors: US Preventive Services Task Force Recommendation Statement.
        JAMA. 2018; 320: 272-280
        • Goff D.C.
        • Lloyd-Jones D.M.
        • Bennett G.
        • Coady S.
        • D'Agostino R.B.
        • Gibbons R.
        • et al.
        2013 ACC/AHA guideline on the assessment of cardiovascular risk: a report of the American College of Cardiology/American Heart Association Task Force on Practice Guidelines.
        Circulation. 2014; 129: 49-73
        • Anderson T.J.
        • Gregoire J.
        • Pearson G.J.
        • Barry A.R.
        • Couture P.
        • Dawes M.
        • et al.
        2016 Canadian Cardiovascular Society Guidelines for the Management of Dyslipidemia for the Prevention of Cardiovascular Disease in the Adult.
        Can J Cardiol. 2016; 32: 1263-1282
        • Piepoli M.
        • Hoes A.
        • Agewall S.
        • Albus C.
        • Brotons C.
        • Catapano A.
        • et al.
        2016 European Guidelines on cardiovascular disease prevention in clinical practice. The Sixth Joint Task Force of the European Society of Cardiology and Other Societies on Cardiovascular Disease Prevention in Clinical Practice (constituted by representatives of 10 societies and by invited experts) Developed with the special contribution of the European Association for Cardiovascular Prevention & Rehabilitation (EACPR).
        Eur Heart J. 2016; 37: 2315-2381