Advertisement
Heart, Lung and Circulation

The Effects of Probiotics on Inflammation, Endothelial Dysfunction, and Atherosclerosis Progression: A Mechanistic Overview

  • Marjan Mahdavi-Roshan
    Affiliations
    Cardiovascular Diseases Research Center, Department of Cardiology, Heshmat Hospital, School of Medicine, Guilan University of Medical Sciences, Rasht, Iran

    Department of Clinical Nutrition, School of Medicine, Guilan University of Medical Sciences, Rasht, Iran
    Search for articles by this author
  • Arsalan Salari
    Affiliations
    Cardiovascular Diseases Research Center, Department of Cardiology, Heshmat Hospital, School of Medicine, Guilan University of Medical Sciences, Rasht, Iran
    Search for articles by this author
  • Jalal Kheirkhah
    Affiliations
    Cardiovascular Diseases Research Center, Department of Cardiology, Heshmat Hospital, School of Medicine, Guilan University of Medical Sciences, Rasht, Iran
    Search for articles by this author
  • Zeinab Ghorbani
    Correspondence
    Corresponding author at: Assistant Professor of Nutrition, Cardiovascular Diseases Research Center, Department of Cardiology, Heshmat Hospital, School of Medicine, Guilan University of Medical Sciences, 15 Khordad Street, District 2, Rasht, Guilan Province, Iran
    Affiliations
    Cardiovascular Diseases Research Center, Department of Cardiology, Heshmat Hospital, School of Medicine, Guilan University of Medical Sciences, Rasht, Iran

    Department of Clinical Nutrition, School of Medicine, Guilan University of Medical Sciences, Rasht, Iran
    Search for articles by this author
Published:February 10, 2022DOI:https://doi.org/10.1016/j.hlc.2021.09.006

      Introduction

      The relationship between the intestinal microbiota dysbiosis, inflammation, and cardiovascular disorders (CVDs) has become evident, based on a growing body of literature from animal models and human studies. On the other hand, probiotics are believed to have promising effects on modifying dysbiosis and protecting against CVDs.

      Objective

      This narrative review provides an overview of the link between gut microbiota, inflammation, endothelial dysfunction, and atherosclerosis. The influences of probiotic supplementation on biomarkers contributing to these conditions as the primary underlying risk factors for developing CVDs are also discussed.

      Methods

      An up-to-date review was performed of the available evidence from experimental studies, clinical trials, and meta-analyses, considering their challenges and limitations. It also aimed to provide mechanistic insight into the likely mechanisms of probiotics that could prevent atherosclerosis initiation and progression.

      Results

      Probiotic supplementation seems to be associated with reduced levels of inflammation and oxidative stress biomarkers (C-reactive protein, tumour necrosis factor-α, interleukin (IL)-6, IL-12, and malondialdehyde). Further, these agents might enhance antioxidant factors (IL-10, total antioxidant status, total antioxidant capacity, glutathione, and nitric oxide). Probiotics also appear to improve intestinal barrier integrity, reduce leakage of harmful metabolites (e.g., lipopolysaccharides), inhibit pro-inflammatory signalling pathways, and possibly suppress the formation of trimethylamine/trimethylamine oxide. Probiotics have also been found to enhance endothelial function and halter thrombosis.

      Conclusion

      The current clinical evidence underlines belief that probiotics might be associated with reduced levels of inflammation biomarkers. Experimental evidence reports that the beneficial effects of probiotics seem to be mainly imposed by triggering the secretion of short-chain fatty acids and bile acids, in addition to suppressing the NF-κB signalling pathway. However, the current studies are still in their infancy and it is of high priority to design further research on the topic.

      Keywords

      To read this article in full you will need to make a payment

      Purchase one-time access:

      Academic & Personal: 24 hour online accessCorporate R&D Professionals: 24 hour online access
      One-time access price info
      • For academic or personal research use, select 'Academic and Personal'
      • For corporate R&D use, select 'Corporate R&D Professionals'

      Subscribe:

      Subscribe to Heart, Lung and Circulation
      Already a print subscriber? Claim online access
      Already an online subscriber? Sign in
      Institutional Access: Sign in to ScienceDirect

      References

        • Katsi V.
        • Didagelos M.
        • Skevofilax S.
        • Armenis I.
        • Kartalis A.
        • Vlachopoulos C.
        • et al.
        GUT microbiome-GUT dysbiosis-arterial hypertension: new horizons.
        Curr Hyperten Rev. 2019; 15: 40-46
        • Cavalcanti Neto M.P.
        • Aquino J.S.
        • Romao da Silva L.F.
        • de Oliveira Silva R.
        • Guimaraes K.S.L.
        • de Oliveira Y.
        • et al.
        Gut microbiota and probiotics intervention: a potential therapeutic target for management of cardiometabolic disorders and chronic kidney disease?.
        Pharmacol Res. 2018; 130: 152-163
        • da Silva T.F.
        • Casarotti S.N.
        • de Oliveira G.L.V.
        • Penna A.L.B.
        The impact of probiotics, prebiotics, and synbiotics on the biochemical, clinical, and immunological markers, as well as on the gut microbiota of obese hosts.
        Crit Rev Food Sci Nutr. 2021; 61: 337-355
        • Nguyen T.T.B.
        • Jin Y.Y.
        • Chung H.-J.
        • Hong S.-T.
        Pharmabiotics as an emerging medication for metabolic syndrome and its related diseases.
        Molecules. 2017; 22: 1795
        • Lin D.C.
        Probiotics as functional foods.
        Nutr Clin Pract. 2003; 18: 497-506
        • Lau K.
        • Srivatsav V.
        • Rizwan A.
        • Nashed A.
        • Liu R.
        • Shen R.
        • et al.
        Bridging the gap between gut microbial dysbiosis and cardiovascular diseases.
        Nutrients. 2017; 9: 859
        • Novakovic M.
        • Rout A.
        • Kingsley T.
        • Kirchoff R.
        • Singh A.
        • Verma V.
        • et al.
        Role of gut microbiota in cardiovascular diseases.
        World J Cardiol. 2020; 12: 110-122
        • Rinninella E.
        • Raoul P.
        • Cintoni M.
        • Franceschi F.
        • Miggiano G.A.D.
        • Gasbarrini A.
        • et al.
        What is the healthy gut microbiota composition? A changing ecosystem across age, environment, diet, and diseases.
        Microorganisms. 2019; 7: 14
        • Rusu E.
        • Enache G.
        • Cursaru R.
        • Alexescu A.
        • Radu R.
        • Onila O.
        • et al.
        Prebiotics and probiotics in atopic dermatitis.
        Exp Ther Med. 2019; 18: 926-931
        • Thushara R.M.
        • Gangadaran S.
        • Solati Z.
        • Moghadasian M.H.
        Cardiovascular benefits of probiotics: a review of experimental and clinical studies.
        Food Funct. 2016; 7: 632-642
        • Kappel B.A.
        • Federici M.
        Gut microbiome and cardiometabolic risk.
        Rev Endocr Metab Disord. 2019; 4: 399-406
        • Tuddenham S.
        • Sears C.L.
        The intestinal microbiome and health.
        Curr Opin Infect Dis. 2015; 28: 464-470
        • Thursby E.
        • Juge N.
        Introduction to the human gut microbiota.
        Biochem J. 2017; 474: 1823-1836
        • Maurice C.F.
        • Haiser H.J.
        • Turnbaugh P.J.
        Xenobiotics shape the physiology and gene expression of the active human gut microbiome.
        Cell. 2013; 152: 39-50
        • Vallianou N.
        • Stratigou T.
        • Christodoulatos G.S.
        • Tsigalou C.
        • Dalamaga M.
        Probiotics, prebiotics, synbiotics, postbiotics, and obesity: current evidence, controversies, and perspectives.
        Curr Obes Rep. 2020; 9: 179-192
        • Wakita Y.
        • Shimomura Y.
        • Kitada Y.
        • Yamamoto H.
        • Ohashi Y.
        • Matsumoto M.
        Taxonomic classification for microbiome analysis, which correlates well with the metabolite milieu of the gut.
        BMC Microbiol. 2018; 18: 188
        • Wen L.
        • Duffy A.
        Factors influencing the gut microbiota, inflammation, and type 2 diabetes.
        J Nutr. 2017; 147: 1468S-1475S
        • Neu J.
        • Rushing J.
        Cesarean versus vaginal delivery: long-term infant outcomes and the hygiene hypothesis.
        Clin Perinatol. 2011; 38: 321-331
        • O'Morain V.L.
        • Ramji D.P.
        The potential of probiotics in the prevention and treatment of atherosclerosis.
        Mol Nutr Food Res. 2020; 64: e1900797
        • Leustean A.M.
        • Ciocoiu M.
        • Sava A.
        • Costea C.F.
        • Floria M.
        • Tarniceriu C.C.
        • et al.
        Implications of the intestinal microbiota in diagnosing the progression of diabetes and the presence of cardiovascular complications.
        J Diabetes Res. 2018; 2018: 5205126
        • Vasquez E.C.
        • Pereira T.M.C.
        • Peotta V.A.
        • Baldo M.P.
        • Campos-Toimil M.
        Probiotics as beneficial dietary supplements to prevent and treat cardiovascular diseases: uncovering their impact on oxidative stress.
        Oxid Med Cell Longev. 2019; 2019: 11
        • Okumura R.
        • Takeda K.
        Roles of intestinal epithelial cells in the maintenance of gut homeostasis.
        Exp Mol Med. 2017; 49: e338-e
        • Walsh K.T.
        • Zemper A.E.
        The enteric nervous system for epithelial researchers: basic anatomy, techniques, and interactions with the epithelium.
        Cell Mol Gastroenterol Hepatol. 2019; 8: 369-378
        • Yoo J.Y.
        • Kim S.S.
        Probiotics and prebiotics: present status and future perspectives on metabolic disorders.
        Nutrients. 2016; 8: 173
        • DeGruttola A.K.
        • Low D.
        • Mizoguchi A.
        • Mizoguchi E.
        Current understanding of dysbiosis in disease in human and animal models.
        Inflamm Bowel Dis. 2016; 22: 1137-1150
        • Falcinelli S.
        • Rodiles A.
        • Hatef A.
        • Picchietti S.
        • Cossignani L.
        • Merrifield D.L.
        • et al.
        Influence of probiotics administration on gut microbiota core: a review on the effects on appetite control, glucose, and lipid metabolism.
        J Clin Gastroenterol. 2018; 52 (Proceedings from the 9th Probiotics, Prebiotics and New Foods, Nutraceuticals and Botanicals for Nutrition & Human and Microbiota Health Meeting, held in Rome, Italy from September 10 to 12, 2017:S50–S6)
        • Schiattarella G.G.
        • Sannino A.
        • Esposito G.
        • Perrino C.
        Diagnostics and therapeutic implications of gut microbiota alterations in cardiometabolic diseases.
        Trends Cardiovas Med. 2019; 29: 141-147
        • Moludi J.
        • Maleki V.
        • Jafari-Vayghyan H.
        • Vaghef-Mehrabany E.
        • Alizadeh M.
        Metabolic endotoxemia and cardiovascular disease: a systematic review about potential roles of prebiotics and probiotics.
        Clin Exp Pharmacol Physiol. 2020; 47: 927-939
        • Frame L.A.
        • Costa E.
        • Jackson S.A.
        Current Explorations of Nutrition and the Gut Microbiome: a Comprehensive Evaluation of the Review Literature.
        Nutr Rev. 2020;
        • Arzani M.
        • Jahromi S.R.
        • Ghorbani Z.
        • Vahabizad F.
        • Martelletti P.
        • Ghaemi A.
        • et al.
        Gut-brain axis and migraine headache: a comprehensive review.
        J Headache Pain. 2020; 21: 15
        • Kim S.
        • Goel R.
        • Kumar A.
        • Qi Y.
        • Lobaton G.
        • Hosaka K.
        • et al.
        Imbalance of gut microbiome and intestinal epithelial barrier dysfunction in patients with high blood pressure.
        Clin Sci (Lond). 2018; 132: 701-718
        • Kaye D.M.
        • Shihata W.A.
        • Jama H.A.
        • Tsyganov K.
        • Ziemann M.
        • Kiriazis H.
        • et al.
        Deficiency of prebiotic fiber and insufficient signaling through gut metabolite-sensing receptors leads to cardiovascular disease.
        Circulation. 2020; 141: 1393-1403
        • Desai M.S.
        • Seekatz A.M.
        • Koropatkin N.M.
        • Kamada N.
        • Hickey C.A.
        • Wolter M.
        • et al.
        A dietary fiber-deprived gut microbiota degrades the colonic mucus barrier and enhances pathogen susceptibility.
        Cell. 2016; 167: 1339-1353.e21
        • Bartolomaeus H.
        • Balogh A.
        • Yakoub M.
        • Homann S.
        • Markó L.
        • Höges S.
        • et al.
        Short-chain fatty acid propionate protects from hypertensive cardiovascular damage.
        Circulation. 2019; 139: 1407-1421
        • Marques F.Z.
        • Nelson E.
        • Chu P.Y.
        • Horlock D.
        • Fiedler A.
        • Ziemann M.
        • et al.
        High-fiber diet and acetate supplementation change the gut microbiota and prevent the development of hypertension and heart failure in hypertensive mice.
        Circulation. 2017; 135: 964-977
        • Arazi H.
        • Samami N.
        • Kheirkhah J.
        • Taati B.
        The effect of three weeks green tea extract consumption on blood pressure, heart rate responses to a single bout resistance exercise in hypertensive women.
        High Blood Press Cardiovasc Prev. 2014; 21: 213-219
        • Ohira H.
        • Tsutsui W.
        • Fujioka Y.
        Are short chain fatty acids in gut microbiota defensive players for inflammation and atherosclerosis?.
        J Atheroscler Thromb. 2017; 24: 660-672
        • Lau E.
        • Neves J.S.
        • Ferreira-Magalhaes M.
        • Carvalho D.
        • Freitas P.
        Probiotic ingestion, obesity, and metabolic-related disorders: results from NHANES, 1999-2014.
        Nutrients. 2019; : 11
        • Casas R.
        • Castro-Barquero S.
        • Estruch R.
        • Sacanella E.
        Nutrition and cardiovascular health.
        Int J Mol Sci. 2018; 19
        • Pastori D.
        • Ettorre E.
        • Carnevale R.
        • Nocella C.
        • Bartimoccia S.
        • Del Sordo E.
        • et al.
        Interaction between serum endotoxemia and proprotein convertase subtilisin/kexin 9 (PCSK9) in patients with atrial fibrillation: a post-hoc analysis from the ATHERO-AF cohort.
        Atherosclerosis. 2019; 289: 195-200
        • Pahwa R.
        • Jialal I.
        Atherosclerosis. [Updated 2020 Aug 10]. In: StatPearls [Internet]. Treasure Island (FL): StatPearls Publishing; 2020 Jan.
        (Available from:)
        • Rafieian-Kopaei M.
        • Setorki M.
        • Doudi M.
        • Baradaran A.
        • Nasri H.
        Atherosclerosis: process, indicators, risk factors and new hopes.
        Int J Prev Med. 2014; 5: 927-946
        • Mahdavi-Roshan M.
        • Zahedmehr A.
        • Mohammad-Zadeh A.
        • Sanati H.-R.
        • Shakerian F.
        • Firouzi A.
        • et al.
        Effect of garlic powder tablet on carotid intima-media thickness in patients with coronary artery disease: a preliminary randomized controlled trial.
        Nutr Health. 2013; 22: 143-155
        • Salari A.
        • Ashouri A.
        • Javadzadeh Moghtader A.
        • Ahmadnia Z.
        • Alizadeh I.
        The relationship between depression symptoms and severity of coronary artery disease in patients undergoing angiography.
        Iran J Psychiatry. 2020; 15: 370-376
        • Dadkhah-Tirani H.
        • Hasandokht T.
        • Agostoni P.
        • Salari A.
        • Shad B.
        • Soltanipour S.
        Comparison of cardiovascular risk factors among coronary artery bypass graft patients in 2010 and 2016: a single-center study in Guilan province, Iran.
        ARYA Atheroscler. 2018; 14: 205-211
        • Semenkovich C.F.
        Insulin resistance and atherosclerosis.
        J Clin Invest. 2006; 116: 1813-1822
        • Alexander R.W.
        Hypertension and the pathogenesis of atherosclerosis.
        Hypertension. 1995; 25: 155-161
        • Mills K.T.
        • Stefanescu A.
        • He J.
        The global epidemiology of hypertension.
        Nature Reviews Nephrology. 2020; 16: 223-237
        • Taati B.
        • Arazi H.
        • Kheirkhah J.
        Interaction effect of green tea consumption and resistance training on office and ambulatory cardiovascular parameters in women with high-normal/stage 1 hypertension.
        J Clin Hyperten. 2021; 23: 978-986
        • Benjamin E.J.
        • Muntner P.
        • Alonso A.
        • Bittencourt M.S.
        • Callaway C.W.
        • Carson A.P.
        • et al.
        Heart Disease and Stroke Statistics-2019 Update: a Report From the American Heart Association.
        Circulation. 2019; 139: e56-e528
        • Mahdavi-Roshanoshan M.
        • Soltanipour S.
        • Mirbolouk F.
        • Salari A.
        • Naghshbandi M.
        The association between TG/HDL-C ratio and severity of coronary artery disease in the north of Iran.
        World Heart J. 2019; 11: 211-217
        • Lusis A.J.
        Atherosclerosis.
        Nature. 2000; 407: 233-241
        • Chen H.
        • Konhilas J.P.
        Chapter 19 - Probiotic Species on Cardiovascular Disease: The Use of Probiotics to Reduce Cardiovascular Disease Risk Factors.
        in: Watson R.R. Preedy V.R. Bioactive Food as Dietary Interventions for Cardiovascular Disease. Academic Press, San Diego2013: 303-317
        • Falck-Hansen M.
        • Kassiteridi C.
        • Monaco C.
        Toll-like receptors in atherosclerosis.
        Int J Mol Sci. 2013; 14: 14008-14023
        • Chistiakov D.A.
        • Kashirskikh D.A.
        • Khotina V.A.
        • Grechko A.V.
        • Orekhov A.N.
        Immune-inflammatory responses in atherosclerosis: the role of myeloid cells.
        J Clin Med. 2019; 8: 1798
        • Schumski A.
        • Winter C.
        • Döring Y.
        • Soehnlein O.
        The ins and outs of myeloid cells in atherosclerosis.
        J Innate Immun. 2018; 10: 479-486
        • Roberts A.B.
        • Gu X.
        • Buffa J.A.
        • Hurd A.G.
        • Wang Z.
        • Zhu W.
        • et al.
        Development of a gut microbe–targeted nonlethal therapeutic to inhibit thrombosis potential.
        Nature Med. 2018; 24: 1407-1417
        • Zhu W.
        • Gregory J.C.
        • Org E.
        • Buffa J.A.
        • Gupta N.
        • Wang Z.
        • et al.
        Gut microbial metabolite TMAO enhances platelet hyperreactivity and thrombosis risk.
        Cell. 2016; 165: 111-124
        • Lindskog Jonsson A.
        • Caesar R.
        • Akrami R.
        • Reinhardt C.
        • Fåk Hållenius F.
        • Borén J.
        • et al.
        Impact of gut microbiota and diet on the development of atherosclerosis in Apoe(-/-) mice.
        Arterioscler Thromb Vasc Biol. 2018; 38: 2318-2326
        • Stepankova R.
        • Tonar Z.
        • Bartova J.
        • Nedorost L.
        • Rossman P.
        • Poledne R.
        • et al.
        Absence of microbiota (germ-free conditions) accelerates the atherosclerosis in ApoE-deficient mice fed standard low cholesterol diet.
        J Atheroscler Thromb. 2010; 17: 796-804
        • Kiouptsi K.
        • Jäckel S.
        • Pontarollo G.
        • Grill A.
        • Kuijpers M.J.E.
        • Wilms E.
        • et al.
        The microbiota promotes arterial thrombosis in low-density lipoprotein receptor-deficient mice.
        mBio. 2019; 10: e02298-19
        • Tang W.H.W.
        • Wang Z.
        • Levison B.S.
        • Koeth R.A.
        • Britt E.B.
        • Fu X.
        • et al.
        Intestinal microbial metabolism of phosphatidylcholine and cardiovascular risk.
        N Engl J Med. 2013; 368: 1575-1584
        • Tang W.H.
        • Wang Z.
        • Fan Y.
        • Levison B.
        • Hazen J.E.
        • Donahue L.M.
        • et al.
        Prognostic value of elevated levels of intestinal microbe-generated metabolite trimethylamine-N-oxide in patients with heart failure: refining the gut hypothesis.
        J Am Coll Cardiol. 2014; 64: 1908-1914
        • Din A.U.
        • Hassan A.
        • Zhu Y.
        • Yin T.
        • Gregersen H.
        • Wang G.
        Amelioration of TMAO through probiotics and its potential role in atherosclerosis.
        Appl Microbiol Biotechnol. 2019; 103: 9217-9228
        • Hamid Reza B.
        • Masoumeh A.
        • Hassan M.
        • Parham S.
        • Fereshteh M.
        • Mohammad Assadian R.
        • et al.
        Comparison between QT interval parameters in type 2 diabetic and nondiabetic patients with non-ST elevation myocardial infarction.
        J Tehran Univ Heart Cent. 2015; 9
        • Jie Z.
        • Xia H.
        • Zhong S.-L.
        • Feng Q.
        • Li S.
        • Liang S.
        • et al.
        The gut microbiome in atherosclerotic cardiovascular disease.
        Nat Commun. 2017; 8: 845
        • Karlsson F.H.
        • Fåk F.
        • Nookaew I.
        • Tremaroli V.
        • Fagerberg B.
        • Petranovic D.
        • et al.
        Symptomatic atherosclerosis is associated with an altered gut metagenome.
        Nat Commun. 2012; 3: 1245
        • Koren O.
        • Spor A.
        • Felin J.
        • Fåk F.
        • Stombaugh J.
        • Tremaroli V.
        • et al.
        Human oral, gut, and plaque microbiota in patients with atherosclerosis.
        Proc Natl Acad Sci U S A. 2011; 108: 4592-4598
        • Jäckel S.
        • Kiouptsi K.
        • Lillich M.
        • Hendrikx T.
        • Khandagale A.
        • Kollar B.
        • et al.
        Gut microbiota regulate hepatic von Willebrand factor synthesis and arterial thrombus formation via Toll-like receptor-2.
        Blood. 2017; 130: 542-553
        • Petersen C.
        • Round J.L.
        Defining dysbiosis and its influence on host immunity and disease.
        Cell Microbiol. 2014; 16: 1024-1033
        • Lässiger-Herfurth A.
        • Pontarollo G.
        • Grill A.
        • Reinhardt C.
        The Gut microbiota in cardiovascular disease and arterial thrombosis.
        Microorganisms. 2019; 7: 691
        • Salari A.
        • Mahdavi-Roshan M.
        • Kheirkhah J.
        • Ghorbani Z.
        Probiotics supplementation and cardiometabolic risk factors: a new insight into recent advances, potential mechanisms, and clinical implications.
        PharmaNutrition. 2021; 16: 100261
        • Pushpanathan P.
        • Mathew G.S.
        • Selvarajan S.
        • Seshadri K.G.
        • Srikanth P.
        Gut microbiota and its mysteries.
        Indian J Med Microbiol. 2019; 37: 268-277
        • Quigley E.M.M.
        Prebiotics and probiotics in digestive health.
        clinical gastroenterology and hepatology. 2019; 17: 333-344
        • Slavin J.L.
        Carbohydrates, dietary fiber, and resistant starch in white vegetables: links to health outcomes.
        Adv Nutr (Bethesda, Md). 2013; 4: 351S-355S
        • Fuentes-Zaragoza E.
        • Riquelme-Navarrete M.J.
        • Sánchez-Zapata E.
        • Pérez-Álvarez J.A.
        Resistant starch as functional ingredient: a review.
        Food Res Int. 2010; 43: 931-942
        • Fuentes-Zaragoza E.
        • Sánchez-Zapata E.
        • Sendra E.
        • Sayas E.
        • Navarro C.
        • Fernández-López J.
        • et al.
        Resistant starch as prebiotic: a review.
        Starch - Stärke. 2011; 63: 406-415
        • Praznik W.
        • Loeppert R.
        • Viernstein H.
        • Haslberger A.G.
        • Unger F.M.
        Dietary fiber and prebiotics.
        in: Ramawat K.G. Mérillon J.-M. Polysaccharides: Bioactivity and Biotechnology. Springer International Publishing, Cham2015: 891-925
        • de Brito Alves J.L.
        • de Sousa V.P.
        • Cavalcanti Neto M.P.
        • Magnani M.
        • Braga VdA.
        • da Costa-Silva J.H.
        • et al.
        New insights on the use of dietary polyphenols or probiotics for the management of arterial hypertension.
        Front Physiol. 2016; 7: 448
        • Liang T.
        • Wu L.
        • Xi Y.
        • Li Y.
        • Xie X.
        • Fan C.
        • et al.
        Probiotics supplementation improves hyperglycemia, hypercholesterolemia, and hypertension in type 2 diabetes mellitus: an update of meta-analysis.
        Crit Rev Food Sci Nutr. 2020; : 1-19
        • Companys J.
        • Pla-Paga L.
        • Calderon-Perez L.
        • Llaurado E.
        • Sola R.
        • Pedret A.
        • et al.
        Fermented dairy products, probiotic supplementation, and cardiometabolic diseases: a systematic review and meta-analysis.
        Adv Nutr. 2020;
        • Koutnikova H.
        • Genser B.
        • Monteiro-Sepulveda M.
        • Faurie J.M.
        • Rizkalla S.
        • Schrezenmeir J.
        • et al.
        Impact of bacterial probiotics on obesity, diabetes and non-alcoholic fatty liver disease related variables: a systematic review and meta-analysis of randomised controlled trials.
        BMJ Open. 2019; 9: e017995
        • Wang X.
        • Juan Q.-F.
        • He Y.-W.
        • Zhuang L.
        • Fang Y.-Y.
        • Wang Y.-H.
        Multiple effects of probiotics on different types of diabetes: a systematic review and meta-analysis of randomized, placebo-controlled trials.
        J Pediatr Endocrinol Metab. 2017; 30: 611-622
        • Markowiak-Kopeć P.
        • Śliżewska K.
        The Effect of probiotics on the production of short-chain fatty acids by human intestinal microbiome.
        Nutrients. 2020; 12: 1107
        • Kurilshikov A.
        • van den Munckhof Inge C.L.
        • Chen L.
        • Bonder Marc J.
        • Schraa K.
        • Rutten Joost H.W.
        • et al.
        Gut microbial associations to plasma metabolites linked to cardiovascular phenotypes and risk.
        Circ Res. 2019; 124: 1808-1820
        • Tabrizi R.
        • Ostadmohammadi V.
        • Lankarani K.B.
        • Akbari M.
        • Akbari H.
        • Vakili S.
        • et al.
        The effects of probiotic and synbiotic supplementation on inflammatory markers among patients with diabetes: a systematic review and meta-analysis of randomized controlled trials.
        Eur J Pharmacol. 2019; 852: 254-264
        • Yao K.
        • Zeng L.
        • He Q.
        • Wang W.
        • Lei J.
        • Zou X.
        Effect of probiotics on glucose and lipid metabolism in type 2 diabetes mellitus: a meta-analysis of 12 randomized controlled trials.
        Med Sci Monit. 2017; 23: 3044-3053
        • McLoughlin R.F.
        • Berthon B.S.
        • Jensen M.E.
        • Baines K.J.
        • Wood L.G.
        Short-chain fatty acids, prebiotics, synbiotics, and systemic inflammation: a systematic review and meta-analysis.
        Am J Clin Nutr. 2017; 106: 930-945
        • Kazemi A.
        • Soltani S.
        • Ghorabi S.
        • Keshtkar A.
        • Daneshzad E.
        • Nasri F.
        • et al.
        Effect of probiotic and synbiotic supplementation on inflammatory markers in health and disease status: a systematic review and meta-analysis of clinical trials.
        Clin Nutr. 2020; 39: 789-819
        • Milajerdi A.
        • Mousavi S.M.
        • Sadeghi A.
        • Salari-Moghaddam A.
        • Parohan M.
        • Larijani B.
        • et al.
        The effect of probiotics on inflammatory biomarkers: a meta-analysis of randomized clinical trials.
        Eur J Nutr. 2020; 59: 633-649
        • Sun J.
        • Buys N.
        Effects of probiotics consumption on lowering lipids and CVD risk factors: a systematic review and meta-analysis of randomized controlled trials.
        Ann Med. 2015; 47: 430-440
        • Zheng H.J.
        • Guo J.
        • Jia Q.
        • Huang Y.S.
        • Huang W.-J.
        • Zhang W.
        • et al.
        The effect of probiotic and synbiotic supplementation on biomarkers of inflammation and oxidative stress in diabetic patients: a systematic review and meta-analysis of randomized controlled trials.
        Pharmacol Res. 2019; 142: 303-313
        • Roshan H.
        • Ghaedi E.
        • Rahmani J.
        • Barati M.
        • Najafi M.
        • Karimzedeh M.
        • et al.
        Effects of probiotics and synbiotic supplementation on antioxidant status: a meta-analysis of randomized clinical trials.
        Clin Nutr ESPEN. 2019; 30: 81-88
        • Ardeshirlarijani E.
        • Tabatabaei-Malazy O.
        • Mohseni S.
        • Qorbani M.
        • Larijani B.
        • Baradar Jalili R.
        Effect of probiotics supplementation on glucose and oxidative stress in type 2 diabetes mellitus: a meta-analysis of randomized trials.
        DARU J Pharmaceut Sci. 2019; 27: 827-837
        • Zamani B.
        • Sheikhi A.
        • Namazi N.
        • Larijani B.
        • Azadbakht L.
        The effects of supplementation with probiotic on biomarkers of oxidative stress in adult subjects: a systematic review and meta-analysis of randomized trials.
        Probiotics Antimicrob Proteins. 2020; 12: 102-111
        • Szulinska M.
        • Loniewski I.
        • van Hemert S.
        • Sobieska M.
        • Bogdanski P.
        Dose-dependent effects of multispecies probiotic supplementation on the lipopolysaccharide (LPS) level and cardiometabolic profile in obese postmenopausal women: a 12-week randomized clinical trial.
        Nutrients. 2018; 10
        • Szulinska M.
        • Loniewski I.
        • Skrypnik K.
        • Sobieska M.
        • Korybalska K.
        • Suliburska J.
        • et al.
        Multispecies probiotic supplementation favorably affects vascular function and reduces arterial stiffness in obese postmenopausal women-a 12-week placebo-controlled and randomized clinical study.
        Nutrients. 2018; 10
        • Cicero A.F.G.
        • Fogacci F.
        • Bove M.
        • Giovannini M.
        • Borghi C.
        Impact of a short-term synbiotic supplementation on metabolic syndrome and systemic inflammation in elderly patients: a randomized placebo-controlled clinical trial.
        Eur J Nutr. 2021; 60: 655-663
        • Farrokhian A.
        • Raygan F.
        • Soltani A.
        • Tajabadi-Ebrahimi M.
        • Sharifi Esfahani M.
        • Karami A.A.
        • et al.
        The effects of synbiotic supplementation on carotid intima-media thickness, biomarkers of inflammation, and oxidative stress in people with overweight, diabetes, and coronary heart disease: a randomized, double-blind, placebo-controlled trial.
        Probiotics Antimicrob Proteins. 2019; 11: 133-142
        • Ghafouri A.
        • Zarrati M.
        • Shidfar F.
        • Heydari I.
        • Shokouhi Shoormasti R.
        • Eslami O.
        Effect of synbiotic bread containing lactic acid on glycemic indicators, biomarkers of antioxidant status and inflammation in patients with type 2 diabetes: a randomized controlled trial.
        Diabetol Metab Syndr. 2019; 11: 103
        • Raygan F.
        • Rezavandi Z.
        • Bahmani F.
        • Ostadmohammadi V.
        • Mansournia M.A.
        • Tajabadi-Ebrahimi M.
        • et al.
        The effects of probiotic supplementation on metabolic status in type 2 diabetic patients with coronary heart disease.
        Diabetol Metab Syndr. 2018; 10: 51
        • Kobyliak N.
        • Falalyeyeva T.
        • Mykhalchyshyn G.
        • Kyriienko D.
        • Komissarenko I.
        Effect of alive probiotic on insulin resistance in type 2 diabetes patients: randomized clinical trial.
        Diabetes Metab Syndr. 2018; 12: 617-624
        • Tonucci L.B.
        • Olbrich Dos Santos K.M.
        • Licursi de Oliveira L.
        • Rocha Ribeiro S.M.
        • Duarte Martino H.S.
        Clinical application of probiotics in type 2 diabetes mellitus: a randomized, double-blind, placebo-controlled study.
        Clin Nutr. 2017; 36: 85-92
        • Bayat A.
        • Azizi-Soleiman F.
        • Heidari-Beni M.
        • Feizi A.
        • Iraj B.
        • Ghiasvand R.
        • et al.
        Effect of Cucurbita ficifolia and probiotic yogurt consumption on blood glucose, lipid profile, and inflammatory marker in type 2 diabetes.
        Int J Prev Med. 2016; 7: 30
        • Bahmani F.
        • Tajadadi-Ebrahimi M.
        • Kolahdooz F.
        • Mazouchi M.
        • Hadaegh H.
        • Jamal A.S.
        • et al.
        The consumption of synbiotic bread containing lactobacillus sporogenes and inulin affects nitric oxide and malondialdehyde in patients with type 2 diabetes mellitus: randomized, double-blind, placebo-controlled trial.
        J Am Coll Nutr. 2016; 35: 506-513
        • Bernini L.J.
        • Simao A.N.
        • Alfieri D.F.
        • Lozovoy M.A.
        • Mari N.L.
        • de Souza C.H.
        • et al.
        Beneficial effects of Bifidobacterium lactis on lipid profile and cytokines in patients with metabolic syndrome: a randomized trial. Effects of probiotics on metabolic syndrome.
        Nutrition. 2016; 32: 716-719
        • Rezazadeh L.
        • Gargari B.P.
        • Jafarabadi M.A.
        • Alipour B.
        Effects of probiotic yogurt on glycemic indexes and endothelial dysfunction markers in patients with metabolic syndrome.
        Nutrition. 2019; 62: 162-168
        • Malik M.
        • Suboc T.M.
        • Tyagi S.
        • Salzman N.
        • Wang J.
        • Ying R.
        • et al.
        Lactobacillus plantarum 299v supplementation improves vascular endothelial function and reduces inflammatory biomarkers in men with stable coronary artery disease.
        Circ Res. 2018; 123: 1091-1102
        • Firouzi S.
        • Majid H.A.
        • Ismail A.
        • Kamaruddin N.A.
        • Barakatun-Nisak M.Y.
        Effect of multi-strain probiotics (multi-strain microbial cell preparation) on glycemic control and other diabetes-related outcomes in people with type 2 diabetes: a randomized controlled trial.
        Eur J Nutr. 2017; 56: 1535-1550
        • Rabiei S.
        • Hedayati M.
        • Rashidkhani B.
        • Saadat N.
        • Shakerhossini R.
        The effects of synbiotic supplementation on body mass index, metabolic and inflammatory biomarkers, and appetite in patients with metabolic syndrome: a triple-blind randomized controlled trial.
        J Diet Suppl. 2019; 16: 294-306
        • Hove K.D.
        • Brons C.
        • Faerch K.
        • Lund S.S.
        • Rossing P.
        • Vaag A.
        Effects of 12 weeks of treatment with fermented milk on blood pressure, glucose metabolism and markers of cardiovascular risk in patients with type 2 diabetes: a randomised double-blind placebo-controlled study.
        Eur J Endocrinol. 2015; 172: 11-20
        • Gomes A.C.
        • de Sousa R.G.
        • Botelho P.B.
        • Gomes T.L.
        • Prada P.O.
        • Mota J.F.
        The additional effects of a probiotic mix on abdominal adiposity and antioxidant status: a double-blind, randomized trial.
        Obesity (Silver Spring). 2017; 25: 30-38
        • Moss J.W.E.
        • Williams J.O.
        • Ramji D.P.
        Nutraceuticals as therapeutic agents for atherosclerosis.
        Biochim Biophys Acta Mol Basis Dis. 2018; 1864: 1562-1572
        • Huang Y.
        • Wang J.
        • Quan G.
        • Wang X.
        • Yang L.
        • Zhong L.
        Lactobacillus acidophilus ATCC 4356 prevents atherosclerosis via inhibition of intestinal cholesterol absorption in apolipoprotein E-knockout mice.
        Appl Environ Microbiol. 2014; 80: 7496-7504
        • Hong Y.-F.
        • Kim H.
        • Kim H.S.
        • Park W.J.
        • Kim J.-Y.
        • Chung D.K.
        Lactobacillus acidophilus K301 inhibits atherogenesis via induction of 24 (S), 25-Epoxycholesterol-Mediated ABCA1 and ABCG1 production and cholesterol efflux in macrophages.
        PLoS One. 2016; 11: e0154302-e
        • Mizoguchi T.
        • Kasahara K.
        • Yamashita T.
        • Sasaki N.
        • Yodoi K.
        • Matsumoto T.
        • et al.
        Oral administration of the lactic acid bacterium Pediococcus acidilactici attenuates atherosclerosis in mice by inducing tolerogenic dendritic cells.
        Heart Vessels. 2017; 32: 768-776
        • Hassan A.
        • Din A.U.
        • Zhu Y.
        • Zhang K.
        • Li T.
        • Wang Y.
        • et al.
        Updates in understanding the hypocholesterolemia effect of probiotics on atherosclerosis.
        Appl Microbiol Biotechnol. 2019; 103: 5993-6006
        • Hadi A.
        • Alizadeh K.
        • Hajianfar H.
        • Mohammadi H.
        • Miraghajani M.
        Efficacy of synbiotic supplementation in obesity treatment: a systematic review and meta-analysis of clinical trials.
        Crit Rev Food Sci Nutr. 2020; 60: 584-596
        • He J.
        • Zhang F.
        • Han Y.
        Effect of probiotics on lipid profiles and blood pressure in patients with type 2 diabetes: a meta-analysis of RCTs.
        Medicine (Baltimore). 2017; 96: e9166
        • Hendijani F.
        • Akbari V.
        Probiotic supplementation for management of cardiovascular risk factors in adults with type II diabetes: a systematic review and meta-analysis.
        Clin Nutr. 2018; 37: 532-541
        • Yao Y.
        • Cai X.
        • Fei W.
        • Ye Y.
        • Zhao M.
        • Zheng C.
        The role of short-chain fatty acids in immunity, inflammation and metabolism.
        Crit Rev Food Sci Nutr. 2020; : 1-12
        • Karlsson C.
        • Ahrne S.
        • Molin G.
        • Berggren A.
        • Palmquist I.
        • Fredrikson G.N.
        • et al.
        Probiotic therapy to men with incipient arteriosclerosis initiates increased bacterial diversity in colon: a randomized controlled trial.
        Atherosclerosis. 2010; 208: 228-233
        • Naruszewicz M.
        • Johansson M.L.
        • Zapolska-Downar D.
        • Bukowska H.
        Effect of Lactobacillus plantarum 299v on cardiovascular disease risk factors in smokers.
        Am J Clin Nutr. 2002; 76: 1249-1255
        • Mahdavi-Roshan M.
        • Rismanchi M.
        • Nasrollahzadeh J.
        Garlic tablet supplementation reduces lipopolysaccharide-induced TNF-alpha production by peripheral blood mononuclear cells.
        Eur J Inflamm. 2016; 14: 190-195
        • Robles-Vera I.
        • Toral M.
        • de la Visitación N.
        • Sánchez M.
        • Gómez-Guzmán M.
        • Romero M.
        • et al.
        Probiotics prevent dysbiosis and the raise in blood pressure in genetic hypertension: role of short-chain fatty acids.
        Mol Nutr Food Res. 2020; 64: e1900646
        • Kang Y.
        • Cai Y.
        Gut microbiota and hypertension: from pathogenesis to new therapeutic strategies.
        Clin Res Hepatol Gastroenterol. 2018; 42: 110-117
        • Su J.B.
        Vascular endothelial dysfunction and pharmacological treatment.
        World J Cardiol. 2015; 7: 719-741
        • Huikuri H.V.
        • Jokinen V.
        • Syvänne M.
        • Nieminen M.S.
        • Airaksinen K.E.J.
        • Ikäheimo M.J.
        • et al.
        Heart rate variability and progression of coronary atherosclerosis.
        Arterioscler Thromb Vasc Biol. 1999; 19: 1979-1985
        • Emkanjoo Z.
        • Mollazdeh R.
        • Alizadeh A.
        • Kheirkhah J.
        • Mohammadi Z.
        • Khalili M.
        • et al.
        Electrocardiographic (ECG) clues to differentiate idiopathic right ventricular outflow tract tachycardia (RVOTT) from arrhythmogenic right ventricular cardiomyopathy (ARVC).
        Indian Heart J. 2014; 66: 607-611
        • Cipak Gasparovic A.
        • Zarkovic N.
        • Zarkovic K.
        • Semen K.
        • Kaminskyy D.
        • Yelisyeyeva O.
        • et al.
        Biomarkers of oxidative and nitro-oxidative stress: conventional and novel approaches.
        Br J Pharmacol. 2017; 174: 1771-1783
        • Tabrizi R.
        • Ostadmohammadi V.
        • Akbari M.
        • Lankarani K.B.
        • Vakili S.
        • Peymani P.
        • et al.
        The Effects of probiotic supplementation on clinical symptom, weight loss, glycemic control, lipid and hormonal profiles, biomarkers of inflammation, and oxidative stress in women with polycystic ovary syndrome: a systematic review and meta-analysis of randomized controlled trials.
        Probiotics Antimicrob Proteins. 2019; : 4
        • Chi C.
        • Li C.
        • Wu D.
        • Buys N.
        • Wang W.
        • Fan H.
        • et al.
        Effects of probiotics on patients with hypertension: a systematic review and meta-analysis.
        Curr Hypertens Rep. 2020; 22: 33
        • Beltrán-Barrientos L.M.
        • González-Córdova A.F.
        • Hernández-Mendoza A.
        • Torres-Inguanzo E.H.
        • Astiazarán-García H.
        • Esparza-Romero J.
        • et al.
        Randomized double-blind controlled clinical trial of the blood pressure–lowering effect of fermented milk with Lactococcus lactis: a pilot study12.
        J Dairy Sci. 2018; 101: 2819-2825
        • Mobini R.
        • Tremaroli V.
        • Stahlman M.
        • Karlsson F.
        • Levin M.
        • Ljungberg M.
        • et al.
        Metabolic effects of Lactobacillus reuteri DSM 17938 in people with type 2 diabetes: a randomized controlled trial.
        Diabetes Obes Metab. 2017; 19: 579-589
        • Sabico S.
        • Al-Mashharawi A.
        • Al-Daghri N.M.
        • Yakout S.
        • Alnaami A.M.
        • Alokail M.S.
        • et al.
        Effects of a multi-strain probiotic supplement for 12 weeks in circulating endotoxin levels and cardiometabolic profiles of medication naive T2DM patients: a randomized clinical trial.
        J Transl Med. 2017; 15: 249
        • Ivey K.L.
        • Hodgson J.M.
        • Kerr D.A.
        • Thompson P.L.
        • Stojceski B.
        • Prince R.L.
        The effect of yoghurt and its probiotics on blood pressure and serum lipid profile; a randomised controlled trial.
        Nutr Metab Cardiovasc Dis. 2015; 25: 46-51
        • Karbach S.H.
        • Schönfelder T.
        • Brandão I.
        • Wilms E.
        • Hörmann N.
        • Jäckel S.
        • et al.
        Gut microbiota promote angiotensin ii-induced arterial hypertension and vascular dysfunction.
        J Am Heart Assoc. 2016; 5
        • Peng J.
        • Xiao X.
        • Hu M.
        • Zhang X.
        Interaction between gut microbiome and cardiovascular disease.
        Life Sci. 2018; 214: 153-157
        • Chistiakov D.A.
        • Bobryshev Y.V.
        • Kozarov E.
        • Sobenin I.A.
        • Orekhov A.N.
        Role of gut microbiota in the modulation of atherosclerosis-associated immune response.
        Front Microbiol. 2015; 6: 671
        • Ge X.
        • Zheng L.
        • Zhuang R.
        • Yu P.
        • Xu Z.
        • Liu G.
        • et al.
        The gut microbial metabolite trimethylamine n-oxide and hypertension risk: a systematic review and dose–response meta-analysis.
        Adv Nutr. 2019; 11: 66-76
        • Kiouptsi K.
        • Jäckel S.
        • Wilms E.
        • Pontarollo G.
        • Winterstein J.
        • Karwot C.
        • et al.
        The commensal microbiota enhances ADP-triggered integrin α(IIb)β(3) activation and von Willebrand factor-mediated platelet deposition to type I collagen.
        Int J Mol Sci. 2020; 21
        • Qiu L.
        • Tao X.
        • Xiong H.
        • Yu J.
        • Wei H.
        Lactobacillus plantarum ZDY04 exhibits a strain-specific property of lowering TMAO via the modulation of gut microbiota in mice.
        Food Funct. 2018; 9: 4299-4309
        • Ferrari F.
        • Stein R.
        • Motta M.T.
        • Moriguchi E.H.
        PCSK9 inhibitors: clinical relevance, molecular mechanisms, and safety in clinical practice.
        Arq Bras Cardiol. 2019; 112: 453-460
        • Horvath A.
        • Leber B.
        • Feldbacher N.
        • Tripolt N.
        • Rainer F.
        • Blesl A.
        • et al.
        Effects of a multispecies synbiotic on glucose metabolism, lipid marker, gut microbiome composition, gut permeability, and quality of life in diabesity: a randomized, double-blind, placebo-controlled pilot study.
        Eur J Nutr. 2019; 59: 2969-2983
        • Kalani M.
        • Hodjati H.
        • Sajedi Khanian M.
        • Doroudchi M.
        Lactobacillus acidophilus increases the anti-apoptotic micro RNA-21 and decreases the pro-inflammatory micro RNA-155 in the LPS-treated human endothelial cells.
        Probiotics Antimicrob Proteins. 2016; 8: 61-72
        • Ito M.
        • Kusuhara S.
        • Yokoi W.
        • Sato T.
        • Ishiki H.
        • Miida S.
        • et al.
        Streptococcus thermophilus fermented milk reduces serum MDA-LDL and blood pressure in healthy and mildly hypercholesterolaemic adults.
        Benef Microbes. 2017; 8: 171-178