Advertisement
Heart, Lung and Circulation

Prosthesis Geometrical Predictors of Leaflet Thrombosis Following Transcatheter Aortic Valve Replacement With Intra-Annular Prostheses

Published:January 19, 2022DOI:https://doi.org/10.1016/j.hlc.2021.11.013

      Objective

      To determine the association between prosthesis geometry with leaflet thrombosis (LT).

      Background

      Leaflet thrombosis following transcatheter aortic valve replacement (TAVR) is a recognised entity. The association between prosthesis geometry with LT is unclear but maybe a potential modifiable factor in its prevention.

      Methods

      Patients who received an intra-annular TAVR prosthesis and were prospectively planned to undergo post-procedural computed tomography (CT) imaging were included. Leaflet thrombosis was defined as at least 50% restricted leaflet motion on CT. Prosthesis expansion and eccentricity was measured at prosthesis inflow, annulus and outflow levels. Prosthesis misalignment was defined as the average angle deviation between native and prosthesis leaflet commissure, greater than 30°.

      Results

      Prevalence of LT was 13.7% in 117 patients. None of the patients with LT were on anticoagulation therapy. Patients with LT had reduced prosthesis annular expansion (89.4±5.2% vs 97.0±4.4%, p<0.01), greater prosthesis misalignment (81.3% vs 48.5%, p=0.02) and deeper implants (6.3±1.7 mm vs 4.3±1.5 mm, p<0.01). Threshold for the presence of LT on ROC analysis was an implant depth of 5.7 mm (AUC [area under curve]=0.81). Independent predictors of LT were annular under-expansion (Odds ratio [OR] 1.4, 95% confidence interval [CI] 1.2–1.7, p=0.03) prosthesis misalignment (OR 6.8, 95%CI 1.1–45.5, p=0.04) and implant depth (OR 1.9, 95%CI 1.1–3.2, p=0.03). Anticoagulation therapy was a protective factor (OR 0.2; 95%CI 0.1–0.4, p<0.01).

      Conclusion

      Geometrical predictors of LT post intra-annular TAVR were reduced prosthesis expansion at the annular level, lower implant depth and greater prosthesis misalignment. These factors may be important considerations during procedural planning for TAVR.

      Central Illustration

      Keywords

      To read this article in full you will need to make a payment

      Purchase one-time access:

      Academic & Personal: 24 hour online accessCorporate R&D Professionals: 24 hour online access
      One-time access price info
      • For academic or personal research use, select 'Academic and Personal'
      • For corporate R&D use, select 'Corporate R&D Professionals'

      Subscribe:

      Subscribe to Heart, Lung and Circulation
      Already a print subscriber? Claim online access
      Already an online subscriber? Sign in
      Institutional Access: Sign in to ScienceDirect

      References

        • Mack M.J.
        • Leon M.B.
        • Thourani V.H.
        • Makkar R.
        • Kodali S.K.
        • Russo M.
        • et al.
        Transcatheter aortic-valve replacement with a balloon-expandable valve in low-risk patients.
        N Engl J Med. 2019; 380: 1695-1705
        • Rashid H.N.
        • Gooley R.P.
        • Nerlekar N.
        • Ihdayhid A.R.
        • McCormick L.M.
        • Nasis A.
        • et al.
        Bioprosthetic aortic valve leaflet thrombosis detected by multidetector computed tomography is associated with adverse cerebrovascular events: a meta-analysis of observational studies.
        EuroIntervention. 2018; 13: e1748-e1755
        • Chakravarty T.
        • Sondergaard L.
        • Friedman J.
        • De Backer O.
        • Berman D.
        • Kofoed K.F.
        • et al.
        Subclinical leaflet thrombosis in surgical and transcatheter bioprosthetic aortic valves: an observational study.
        Lancet. 2017; 389: 2383-2392
        • Makkar R.R.
        • Fontana G.
        • Jilaihawi H.
        • Chakravarty T.
        • Kofoed K.F.
        • de Backer O.
        • et al.
        Possible subclinical leaflet thrombosis in bioprosthetic aortic valves.
        N Engl J Med. 2015; 373: 2015-2024
        • Hansson N.C.
        • Grove E.L.
        • Andersen H.R.
        • Leipsic J.
        • Mathiassen O.N.
        • Jensen J.M.
        • et al.
        Transcatheter aortic valve thrombosis: incidence, predisposing factors, and clinical implications.
        J Am Coll Cardiol. 2016; 68: 2059-2069
        • Midha P.A.
        • Raghav V.
        • Condado J.F.
        • Okafor I.U.
        • Lerakis S.
        • Thourani V.H.
        • et al.
        Valve type, size, and deployment location affect hemodynamics in an in vitro valve-in-valve model.
        JACC Cardiovasc Interv. 2016; 9: 1618-1628
        • Midha P.A.
        • Raghav V.
        • Sharma R.
        • Condado J.F.
        • Okafor I.U.
        • Rami T.
        • et al.
        The fluid mechanics of transcatheter heart valve leaflet thrombosis in the neosinus.
        Circulation. 2017; 136: 1598-1609
        • Vahidkhah K.
        • Barakat M.
        • Abbasi M.
        • Javani S.
        • Azadani P.N.
        • Tandar A.
        • et al.
        Valve thrombosis following transcatheter aortic valve replacement: significance of blood stasis on the leaflets.
        Eur J Cardiothorac Surg. 2017; 51: 927-935
        • Ducci A.
        • Pirisi F.
        • Tzamtzis S.
        • Burriesci G.
        Transcatheter aortic valves produce unphysiological flows which may contribute to thromboembolic events: an in-vitro study.
        J Biomech. 2016; 49: 4080-4089
        • Fuchs A.
        • Kofoed K.F.
        • Yoon S.H.
        • Schaffner Y.
        • Bieliauskas G.
        • Thyregod H.G.
        • et al.
        Commissural alignment of bioprosthetic aortic valve and native aortic valve following surgical and transcatheter aortic valve replacement and its impact on valvular function and coronary filling.
        JACC Cardiovasc Interv. 2018; 11: 1733-1743
        • Jilaihawi H.
        • Asch F.M.
        • Manasse E.
        • Ruiz C.E.
        • Jelnin V.
        • Kashif M.
        • et al.
        Systematic CT methodology for the evaluation of subclinical leaflet thrombosis.
        JACC Cardiovasc Imaging. 2017; 10: 461-470
        • Baumgartner H.
        • Falk V.
        • Bax J.J.
        • De Bonis M.
        • Hamm C.
        • Holm P.J.
        • et al.
        2017 ESC/EACTS Guidelines for the management of valvular heart disease.
        Eur Heart J. 2017; 38: 2739-2791
        • Sondergaard L.
        • De Backer O.
        • Kofoed K.F.
        • Jilaihawi H.
        • Fuchs A.
        • Chakravarty T.
        • et al.
        Natural history of subclinical leaflet thrombosis affecting motion in bioprosthetic aortic valves.
        Eur Heart J. 2017; 38: 2201-2207
        • Rashid H.N.
        • Michail M.
        • Ihdayhid A.R.
        • Dowling C.
        • Khav N.
        • Tan S.
        • et al.
        Clinical predictors and sequelae of computed tomography defined leaflet thrombosis following transcatheter aortic valve replacement at medium-term follow-up.
        Heart Vessels. 2021;
        • Makkar R.R.
        • Blanke P.
        • Leipsic J.
        • Thourani V.
        • Chakravarty T.
        • Brown D.
        • et al.
        Subclinical leaflet thrombosis in transcatheter and surgical bioprosthetic valves: PARTNER 3 cardiac computed tomography substudy.
        J Am Coll Cardiol. 2020; 75: 3003-3015
        • Blanke P.
        • Weir-McCall J.R.
        • Achenbach S.
        • Delgado V.
        • Hausleiter J.
        • Jilaihawi H.
        • et al.
        Computed tomography imaging in the context of transcatheter aortic valve implantation (TAVI)/transcatheter aortic valve replacement (TAVR): an expert consensus document of the Society of Cardiovascular Computed Tomography.
        JACC Cardiovasc Imaging. 2019; 12: 1-24
        • Husser O.
        • Pellegrini C.
        • Kessler T.
        • Burgdorf C.
        • Thaller H.
        • Mayr N.P.
        • et al.
        Predictors of permanent pacemaker implantations and new-onset conduction abnormalities with the SAPIEN 3 balloon-expandable transcatheter heart valve.
        JACC Cardiovasc Interv. 2016; 9: 244-254
        • Bailey J.
        • Curzen N.
        • Bressloff N.W.
        The impact of imperfect frame deployment and rotational orientation on stress within the prosthetic leaflets during transcatheter aortic valve implantation.
        J Biomech. 2017; 53: 22-28
        • Jilaihawi H.
        • Makkar R.R.
        • Kashif M.
        • Okuyama K.
        • Chakravarty T.
        • Shiota T.
        • et al.
        A revised methodology for aortic-valvar complex calcium quantification for transcatheter aortic valve implantation.
        Eur Heart J Cardiovasc Imaging. 2014; 15: 1324-1332
        • Groves E.M.
        • Falahatpisheh A.
        • Su J.L.
        • Kheradvar A.
        The effects of positioning of transcatheter aortic valves on fluid dynamics of the aortic root.
        ASAIO J. 2014; 60: 545-552
        • Vahidkhah K.
        • Azadani A.N.
        Supra-annular valve-in-valve implantation reduces blood stasis on the transcatheter aortic valve leaflets.
        J Biomech. 2017; 58: 114-122
        • Rashid H.N.
        • Gooley R.P.
        • Cameron J.D.
        Prosthesis geometrical factors in the development of hypo-attenuated leaflet thickening.
        J Am Coll Cardiol. 2020; 76: 1913-1914
        • Rashid H.N.
        • Nasis A.
        • Gooley R.P.
        • Cameron J.D.
        • Brown A.J.
        The prevalence of computed tomography-defined leaflet thrombosis in intra- versus supra-annular transcatheter aortic valve prostheses.
        Catheter Cardiovasc Interv. 2018;
        • Feldman T.E.
        • Reardon M.J.
        • Rajagopal V.
        • Makkar R.R.
        • Bajwa T.K.
        • Kleiman N.S.
        • et al.
        Effect of mechanically expanded vs self-expanding transcatheter aortic valve replacement on mortality and major adverse clinical events in high-risk patients with aortic stenosis: the REPRISE III randomized clinical trial.
        JAMA. 2018; 319: 27-37
        • Mangione F.M.
        • Jatene T.
        • Goncalves A.
        • Fishbein G.A.
        • Mitchell R.N.
        • Pelletier M.P.
        • et al.
        Leaflet thrombosis in surgically explanted or post-mortem TAVR valves.
        JACC Cardiovasc Imaging. 2017; 10: 82-85
        • Khodaee F.
        • Barakat M.
        • Abbasi M.
        • Dvir D.
        • Azadani A.N.
        Incomplete expansion of transcatheter aortic valves is associated with propensity for valve thrombosis.
        Interact Cardiovasc Thorac Surg. 2020; 30: 39-46
        • Tang G.H.L.
        • Zaid S.
        • Gupta E.
        • Ahmad H.
        • Patel N.
        • Khan M.
        • et al.
        Impact of initial Evolut transcatheter aortic valve replacement deployment orientation on final valve orientation and coronary reaccess.
        Circ Cardiovasc Interv. 2019; 12: e008044
        • Gunning P.S.
        • Vaughan T.J.
        • McNamara L.M.
        Simulation of self expanding transcatheter aortic valve in a realistic aortic root: implications of deployment geometry on leaflet deformation.
        Ann Biomed Eng. 2014; 42: 1989-2001
        • Scotten L.N.
        • Siegel R.
        Thrombogenic potential of transcatheter aortic valve implantation with trivial paravalvular leakage.
        Ann Transl Med. 2014; 2: 43
        • Consolo F.
        • Sheriff J.
        • Gorla S.
        • Magri N.
        • Bluestein D.
        • Pappalardo F.
        • et al.
        High frequency components of hemodynamic shear stress profiles are a major determinant of shear-mediated platelet activation in therapeutic blood recirculating devices.
        Sci Rep. 2017; 7: 4994
        • Tang G.H.L.
        • Zaid S.
        • Fuchs A.
        • Yamabe T.
        • Yazdchi F.
        • Gupta E.
        • et al.
        Alignment of transcatheter aortic-valve neo-commissures (ALIGN TAVR): impact on final valve orientation and coronary artery overlap.
        JACC Cardiovasc Interv. 2020;
        • Dangas G.D.
        • Tijssen J.G.P.
        • Wohrle J.
        • Sondergaard L.
        • Gilard M.
        • Mollmann H.
        • et al.
        A controlled trial of rivaroxaban after transcatheter aortic-valve replacement.
        N Engl J Med. 2019; 382: 120-129
        • De Backer O.
        • Dangas G.D.
        • Jilaihawi H.
        • Leipsic J.A.
        • Terkelsen C.J.
        • Makkar R.
        • et al.
        Reduced leaflet motion after transcatheter aortic-valve replacement.
        N Engl J Med. 2020; 382: 130-139
        • Nijenhuis V.J.
        • Brouwer J.
        • Delewi R.
        • Hermanides R.S.
        • Holvoet W.
        • Dubois C.L.F.
        • et al.
        Anticoagulation with or without clopidogrel after transcatheter aortic-valve implantation.
        N Engl J Med. 2020; 382: 1696-1707
        • Brouwer J.
        • Nijenhuis V.J.
        • Delewi R.
        • Hermanides R.S.
        • Holvoet W.
        • Dubois C.L.F.
        • et al.
        Aspirin with or without clopidogrel after transcatheter aortic-valve implantation.
        N Engl J Med. 2020;