Heart, Lung and Circulation

Machine Learning in Paediatric Cardiac Surgery: Ready for Prime Time?

Published:January 13, 2022DOI:
      Machine learning (ML) is a branch of artificial intelligence which involves ‘learning’ the complex relationships between predictors and outcomes. Despite wide availability, these techniques have been rarely implemented into everyday clinical practice. The use of ML in paediatric cardiac surgery is even rarer. The time has come to employ ML to develop risk adjustment models for patient prognosis and benchmarking as a natural starting point for real-time personalised risk prediction in paediatric cardiac surgery.


      To read this article in full you will need to make a payment

      Purchase one-time access:

      Academic & Personal: 24 hour online accessCorporate R&D Professionals: 24 hour online access
      One-time access price info
      • For academic or personal research use, select 'Academic and Personal'
      • For corporate R&D use, select 'Corporate R&D Professionals'


      Subscribe to Heart, Lung and Circulation
      Already a print subscriber? Claim online access
      Already an online subscriber? Sign in
      Institutional Access: Sign in to ScienceDirect


      1. Ascent of machine learning in medicine.
        Nat Mater. 2019; 18: 407
        • Erickson B.J.
        • Korfiatis P.
        • Akkus Z.
        • Kline T.L.
        Machine learning for medical imaging.
        Radiographics. 2017; 37: 505-515
        • Lundervold A.S.
        • Lundervold A.
        An overview of deep learning in medical imaging focusing on MRI. Vol. 29. 2019: 102-127 (Zeitschrift fur Medizinische Physik. Elsevier GmbH; 2019. p. 102–27)
        • Goldstein B.A.
        • Navar A.M.
        • Carter R.E.
        Moving beyond regression techniques in cardiovascular risk prediction: applying machine learning to address analytic challenges.
        Eur Heart J. 2017; 38: 1805-1814
        • Hastie T.
        • Tibshirani R.
        • Friedman J.
        The Elements of Statistical Learning.
        Springer New York, New York, NY2009 (Springer Series in Statistics)
        • Kuhn M.
        • Johnson K.
        in: Applied Predictive Modeling. Springer, New York2013: 1-16
        • Rogers L.
        • Brown K.L.
        • Franklin R.C.
        • Ambler G.
        • Anderson D.
        • Barron D.J.
        • et al.
        Improving risk adjustment for mortality after pediatric cardiac surgery: the UK PRAiS2 model.
        Ann Thorac Surg. 2017; 104: 211-219
        • O’Brien S.M.
        • Jacobs J.P.
        • Pasquali S.K.
        • Gaynor J.W.
        • Karamlou T.
        • Welke K.F.
        • et al.
        The Society of Thoracic Surgeons Congenital Heart Surgery database mortality risk model: Part 1 - statistical methodology.
        Ann Thorac Surg. 2015; 100: 1054-1062
        • Benedetto U.
        • Dimagli A.
        • Sinha S.
        • Cocomello L.
        • Gibbison B.
        • Caputo M.
        • et al.
        Machine learning improves mortality risk prediction after cardiac surgery: systematic review and meta-analysis.
        J Thorac Cardiovasc Surg. 2020; (Epub ahead of print)
        • Kilic A.
        • Goyal A.
        • Miller J.K.
        • Gjekmarkaj E.
        • Tam W.L.
        • Gleason T.G.
        • et al.
        Predictive utility of a machine learning algorithm in estimating mortality risk in cardiac surgery.
        Ann Thorac Surg. 2020; 109: 1811-1819
        • Meza J.M.
        • Slieker M.
        • Blackstone E.H.
        • Mertens L.
        • DeCampli W.M.
        • Kirklin J.K.
        • et al.
        A novel, data-driven conceptualization for critical left heart obstruction.
        Comput Methods Programs Biomed. 2018; 165: 107-116
        • Ruiz V.M.
        • Saenz L.
        • Lopez-Magallon A.
        • Shields A.
        • Ogoe H.A.
        • Suresh S.
        • et al.
        Early prediction of critical events for infants with single-ventricle physiology in critical care using routinely collected data.
        J Thorac Cardiovasc Surg. 2019; 158: 234-243.e3
        • Samad M.D.
        • Wehner G.J.
        • Arbabshirani M.R.
        • Jing L.
        • Powell A.J.
        • Geva T.
        • et al.
        Predicting deterioration of ventricular function in patients with repaired tetralogy of Fallot using machine learning.
        Eur Heart J Cardiovasc Imaging. 2018; 19: 730-738
        • Diller G.P.
        • Babu-Narayan S.
        • Li W.
        • Radojevic J.
        • Kempny A.
        • Uebing A.
        • et al.
        Utility of machine learning algorithms in assessing patients with a systemic right ventricle.
        Eur Heart J Cardiovasc Imaging. 2019; 20: 925-931
        • Diller G.P.
        • Orwat S.
        • Vahle J.
        • Bauer U.M.M.
        • Bauer U.M.M.
        • Urban A.
        • et al.
        Prediction of prognosis in patients with tetralogy of Fallot based on deep learning imaging analysis.
        Heart. 2020; 106: 1007-1014
        • Ruiz-Fernández D.
        • Monsalve Torra A.
        • Soriano-Payá A.
        • Marín-Alonso O.
        • Triana Palencia E.
        Aid decision algorithms to estimate the risk in congenital heart surgery.
        Comput Methods Programs Biomed. 2016; 126: 118-127
        • Jalali A.
        • Lonsdale H.
        • Do N.
        • Peck J.
        • Gupta M.
        • Kutty S.
        • et al.
        Deep learning for improved risk prediction in surgical outcomes.
        Sci Rep. 2020; 10: 1-13
        • Junior J.C.
        • Binuesa F.
        • Caneo L.F.
        • Ribeiro Turquetto A.L.
        • Calvo Arita E.C.T.
        • Barbosa A.C.
        • et al.
        Improving preoperative risk-of-death prediction in surgery congenital heart defects using artificial intelligence model: a pilot study.
        PLoS One. 2020; 15: e0238199
        • Zeng X.
        • An J.
        • Lin R.
        • Dong C.
        • Zheng A.
        • Li J.
        • et al.
        Prediction of complications after paediatric cardiac surgery.
        Eur J Cardiothorac Surg. 2020; 57: 350-358
        • Yoon C.H.
        • Torrance R.
        • Scheinerman N.
        Machine learning in medicine: should the pursuit of enhanced interpretability be abandoned?.
        J Med Ethics. 2021; 0: 1-5
        • Obermeyer Z.
        • Powers B.
        • Vogeli C.
        • Mullainathan S.
        Dissecting racial bias in an algorithm used to manage the health of populations.
        Science. 2019; 366: 447-453
        • Molnar C
        • Casalicchio G
        • Bischl B
        Interpretable machine learning–a brief history, state-of-the-art and challenges.
        in: Joint European Conference on Machine Learning and Knowledge Discovery in Databases. Springer, Cham2020: 417-431
        • Lundberg S.M.
        • Erion G.G.
        • Lee S.I.
        Consistent individualized feature attribution for tree ensembles.
        arXiv. 2018; (arXiv:1802.03888)
        • Betts K.S.
        • Kisely S.
        • Alati R.
        Predicting neonatal respiratory distress syndrome and hypoglycaemia prior to discharge: leveraging health administrative data and machine learning.
        J Biomed Inform. 2021; 114