Advertisement
Heart, Lung and Circulation

A State-of-the-Art Review: The Percutaneous Treatment of Highly Calcified Lesions

Published:September 20, 2022DOI:https://doi.org/10.1016/j.hlc.2022.08.009
      Coronary artery calcification is prevalent in coronary heart disease with its progression being predictive of future adverse cardiac events. Its presence is considered to be a marker of interventional procedural complexity. Several adjunctive percutaneous coronary intervention tools, such as modifying balloons, atherectomy devices and intravascular lithotripsy, now exist to successfully treat calcified lesions. In this state-of-the-art review, a step-wise progression of strategies is described to modify coronary plaque, from well-recognised techniques to techniques that should only be considered when standard manoeuvres have proven unsuccessful. Technology has advanced greatly over the past few decades and we discuss how future technologies might shape percutaneous intervention.

      Keywords

      To read this article in full you will need to make a payment

      Purchase one-time access:

      Academic & Personal: 24 hour online accessCorporate R&D Professionals: 24 hour online access
      One-time access price info
      • For academic or personal research use, select 'Academic and Personal'
      • For corporate R&D use, select 'Corporate R&D Professionals'

      Subscribe:

      Subscribe to Heart, Lung and Circulation
      Already a print subscriber? Claim online access
      Already an online subscriber? Sign in
      Institutional Access: Sign in to ScienceDirect

      References

        • Budoff M.J.
        • Young R.
        • Lopez V.A.
        • Kronmal R.A.
        • Nasir K.
        • Blumenthal R.S.
        • et al.
        Progression of coronary calcium and incident coronary heart disease events.
        J Am Coll Cardiol. 2013; 61: 1231-1239
        • De Maria G.L.
        • Scarsini R.
        • Banning A.P.
        Management of calcific coronary artery lesions: is it time to change our interventional therapeutic approach?.
        JACC Cardiovasc Interv. 2019; 12: 1465-1478
        • Lanzer P.
        • Boehm M.
        • Sorribas V.
        • Thiriet M.
        • Janzen J.
        • Zeller T.
        • et al.
        Medial vascular calcification revisited: review and perspectives.
        Eur Heart J. 2014; 35: 1515-1525
        • Nakahara T.
        • Dweck M.R.
        • Narula N.
        • Pisapia D.
        • Narula J.
        • Strauss H.W.
        Coronary artery calcification.
        JACC Cardiovasc Imaging. 2017; 10: 582-593
        • Ehara S.
        • Kobayashi Y.
        • Yoshiyama M.
        • Shimada K.
        • Shimada Y.
        • Fukuda D.
        • et al.
        Spotty calcification typifies the culprit plaque in patients with acute myocardial infarction: an intravascular ultrasound study.
        Circulation. 2004; 110: 3424-3429
        • Burke A.P.
        • Kolodgie F.D.
        • Farb A.
        • Weber D.
        • Virmani R.
        Morphological predictors of arterial remodeling in coronary atherosclerosis.
        Circulation. 2002; 105: 297-303
        • Motoyama S.
        • Kondo T.
        • Sarai M.
        • Sugiura A.
        • Harigaya H.
        • Sato T.
        • et al.
        Multislice computed tomographic characteristics of coronary lesions in acute coronary syndromes.
        J Am Coll Cardiol. 2007; 50: 319-326
        • Sangiorgi G.
        • Rumberger J.A.
        • Severson A.
        • Edwards W.D.
        • Gregoire J.
        • Fitzpatrick L.A.
        • et al.
        Arterial calcification and not lumen stenosis is highly correlated with atherosclerotic plaque burden in humans: a histologic study of 723 coronary artery segments using nondecalcifying methodology.
        J Am Coll Cardiol. 1998; 31: 126-133
        • Mauriello A.
        • Servadei F.
        • Zoccai G.B.
        • Giacobbi E.
        • Anemona L.
        • Bonanno E.
        • et al.
        Coronary calcification identifies the vulnerable patient rather than the vulnerable Plaque.
        Atherosclerosis. 2013; 229: 124-129
        • Généreux P.
        • Madhavan M.V.
        • Mintz G.S.
        • Maehara A.
        • Palmerini T.
        • Lasalle L.
        • et al.
        Ischemic outcomes after coronary intervention of calcified vessels in acute coronary syndromes. Pooled analysis from the HORIZONS-AMI (Harmonizing Outcomes With Revascularization and Stents in Acute Myocardial Infarction) and ACUITY (Acute Catheterization and Urgent Intervention Triage Strategy) TRIALS.
        J Am Coll Cardiol. 2014; 63: 1845-1854
        • Huisman J.
        • van der Heijden L.C.
        • Kok M.M.
        • Danse P.W.
        • Jessurun G.A.J.
        • Stoel M.G.
        • et al.
        Impact of severe lesion calcification on clinical outcome of patients with stable angina, treated with newer generation permanent polymer-coated drug-eluting stents: A patient-level pooled analysis from TWENTE and DUTCH PEERS (TWENTE II).
        Am Heart J. 2016; 175: 121-129
        • Tarigopula M.
        • Généreux P.
        • Madhavan M.V.
        • Parvataneni R.
        • Weisz G.
        • Mehran R.
        • et al.
        Revascularization strategies for calcified lesions in patients presenting with acute coronary syndromes (from the Acute Catheterization and Urgent Intervention Triage StrategY [ACUITY] Trial).
        J Invasive Cardiol. 2016; 28: 10-16
        • Bourantas C.V.
        • Zhang Y.J.
        • Garg S.
        • Iqbal J.
        • Valgimigli M.
        • Windecker S.
        • et al.
        Prognostic implications of coronary calcification in patients with obstructive coronary artery disease treated by percutaneous coronary intervention: a patient-level pooled analysis of 7 contemporary stent trials.
        Heart. 2014; 100: 1158-1164
        • Vavouranakis M.
        • Toutouzas K.
        • Stefanadis C.
        • Chrisohou C.
        • Markou D.
        • Toutouzas P.
        Stent deployment in calcified lesions: can we overcome calcific restraint with high-pressure balloon inflations?.
        Cathete Cardiovasc Interv. 2001; 52: 164-172
        • Kuriyama N.
        • Kobayashi Y.
        • Yamaguchi M.
        • Shibata Y.
        Usefulness of rotational atherectomy in preventing polymer damage of everolimus-eluting stent in calcified coronary artery.
        JACC Cardiovasc Interv. 2011; 4: 588-589
        • Borissoff J.I.
        • Joosen I.A.
        • Versteylen M.O.
        • Spronk H.M.
        • ten Cate H.
        • Hofstra L.
        Accelerated in vivo thrombin formation independently predicts the presence and severity of CT angiographic coronary atherosclerosis.
        JACC Cardiovasc Imaging. 2012; 5: 1201-1210
        • Hofmann Bowman M.A.
        • McNally E.M.
        Genetic pathways of vascular calcification.
        Trends Cardiovasc Med. 2012; 22: 93-98
        • Sekimoto T.
        • Akutsu Y.
        • Hamazaki Y.
        • Sakai K.
        • Kosaki R.
        • Yokota H.
        • et al.
        Regional calcified plaque score evaluated by multidetector computed tomography for predicting the addition of rotational atherectomy during percutaneous coronary intervention.
        J Cardiovasc Comput Tomogr. 2016; 10: 221-228
        • Bortnick A.E.
        • Epps K.C.
        • Selzer F.
        • Anwaruddin S.
        • Marroquin O.C.
        • Srinivas V.
        • et al.
        Five-year follow-up of patients treated for coronary artery disease in the face of an increasing burden of co-morbidity and disease complexity (from the NHLBI Dynamic Registry).
        Am J Cardiol. 2014; 113: 573-579
        • Madhavan M.V.
        • Tarigopula M.
        • Mintz G.S.
        • Maehara A.
        • Stone G.W.
        • Genereux P.
        Coronary artery calcification: pathogenesis and prognostic implications.
        J Am Coll Cardiol. 2014; 63: 1703-1714
        • Cockburn J.
        • Hildick-Smith D.
        • Cotton J.
        • Doshi S.
        • Hanratty C.
        • Ludman P.
        • et al.
        Contemporary clinical outcomes of patients treated with or without rotational coronary atherectomy--an analysis of the UK central cardiac audit database.
        Int J Cardiol. 2014; 170: 381-387
        • Wang X.
        • Matsumura M.
        • Mintz G.S.
        • Lee T.
        • Zhang W.
        • Cao Y.
        • et al.
        In vivo calcium detection by comparing optical coherence tomography, intravascular ultrasound, and angiography.
        JACC Cardiovasc Imaging. 2017; 10: 869-879
        • Friedrich G.J.
        • Moes N.Y.
        • Mühlberger V.A.
        • Gabl C.
        • Mikuz G.
        • Hausmann D.
        • et al.
        Detection of intralesional calcium by intracoronary ultrasound depends on the histologic pattern.
        Am Heart J. 1994; 128: 435-441
        • Yabushita H.
        • Bouma B.E.
        • Houser S.L.
        • Aretz H.T.
        • Jang I.K.
        • Schlendorf K.H.
        • et al.
        Characterization of human atherosclerosis by optical coherence tomography.
        Circulation. 2002; 106: 1640-1645
        • Kawasaki M.
        • Bouma B.E.
        • Bressner J.
        • Houser S.L.
        • Nadkarni S.K.
        • MacNeill B.D.
        • et al.
        Diagnostic accuracy of optical coherence tomography and integrated backscatter intravascular ultrasound images for tissue characterization of human coronary plaques.
        J Am Coll Cardiol. 2006; 48: 81-88
        • Sugawara Y.
        • Ueda T.
        • Soeda T.
        • Watanabe M.
        • Okura H.
        • Saito Y.
        Plaque modification of severely calcified coronary lesions by scoring balloon angioplasty using Lacrosse non-slip element: insights from an optical coherence tomography evaluation.
        Cardiovasc Interv Ther. 2019; 34: 242-248
        • Fujino A.
        • Mintz G.S.
        • Matsumura M.
        • Lee T.
        • Kim S.Y.
        • Hoshino M.
        • et al.
        A new optical coherence tomography-based calcium scoring system to predict stent underexpansion.
        EuroIntervention. 2018; 13: e2182-e2189
        • Neumann F.-J.
        • Sousa-Uva M.
        • Ahlsson A.
        • Alfonso F.
        • Banning A.P.
        • Benedetto U.
        • et al.
        2018 ESC/EACTS guidelines on myocardial revascularization.
        Eur Heart J. 2018; 40: 87-165
        • Naidu S.S.
        • Abbott J.D.
        • Bagai J.
        • Blankenship J.
        • Garcia S.
        • Iqbal S.N.
        • et al.
        SCAI expert consensus update on best practices in the cardiac catheterization laboratory: This statement was endorsed by the American College of Cardiology (ACC), the American Heart Association (AHA), and the Heart Rhythm Society (HRS) in April 2021.
        Catheter Cardiovasc Interv. 2021; 98: 255-276
        • McQuillan C.
        • Jackson M.W.P.
        • Brilakis E.S.
        • Egred M.
        Uncrossable and undilatable lesions—A practical approach to optimizing outcomes in PCI.
        Catheter Cardiovasc Interv. 2021; 97: 121-126
        • Richardson P.D.
        • Davies M.J.
        • Born G.V.
        Influence of plaque configuration and stress distribution on fissuring of coronary atherosclerotic plaques.
        Lancet. 1989; 2: 941-944
        • Fitzgerald P.J.
        • Ports T.A.
        • Yock P.G.
        Contribution of localized calcium deposits to dissection after angioplasty. An observational study using intravascular ultrasound.
        Circulation. 1992; 86: 64-70
        • Demer L.L.
        Effect of calcification on in vivo mechanical response of rabbit arteries to balloon dilation.
        Circulation. 1991; 83: 2083-2093
        • Alkhalil M.
        • Smyth A.
        • Walsh S.J.
        • McQuillan C.
        • Spence M.S.
        • Owens C.G.
        • et al.
        Did the use of the Guideliner V2(TM) guide catheter extension increase complications? A review of the incidence of complications related to the use of the V2 catheter, the influence of right brachiocephalic arterial anatomy and the redesign of the V3(TM) Guideliner and clinical outcomes.
        Open Heart. 2016; 3: e000331-e
        • Okura H.
        • Hayase M.
        • Shimodozono S.
        • Kobayashi T.
        • Sano K.
        • Matsushita T.
        • et al.
        Mechanisms of acute lumen gain following cutting balloon angioplasty in calcified and noncalcified lesions: An intravascular ultrasound study.
        Catheter Cardiovasc Interv. 2002; 57: 429-436
        • Barath P.
        • Fishbein M.C.
        • Vari S.
        • Forrester J.S.
        Cutting balloon: a novel approach to percutaneous angioplasty.
        Am J Cardiol. 1991; 68: 1249-1252
        • de Ribamar Costa J.
        • Mintz G.S.
        • Carlier S.G.
        • Mehran R.
        • Teirstein P.
        • Sano K.
        • et al.
        Nonrandomized comparison of coronary stenting under intravascular ultrasound guidance of direct stenting without predilation versus conventional predilation with a semi-compliant balloon versus predilation with a new scoring balloon.
        Am J Cardiol. 2007; 100: 812-817
        • Singh H.
        • Kirtane A.
        • Moses J.
        AngioSculpt® scoring balloon catheter: an atherotomy device for coronary and peripheral interventions.
        Interv Cardiol. 2010; 2: 469-478
        • Tobias R.
        • Himanshu R.
        • Gert R.
        • Abdelhakim A.
        • Mohamed A.-W.
        • Dmitriy S.S.
        • et al.
        Super high-pressure balloon versus scoring balloon to prepare severely calcified coronary lesions: the ISAR-CALC randomised trial.
        EuroIntervention. 2021; 17: 481-488
        • Ritchie J.L.
        • Hansen D.D.
        • Intlekofer M.J.
        • Hall M.
        • Auth D.C.
        Rotational approaches to atherectomy and thrombectomy.
        Z Kardiol. 1987; 76: 59-65
        • Bittl J.A.
        • Chew D.P.
        • Topol E.J.
        • Kong D.F.
        • Califf R.M.
        Meta-analysis of randomized trials of percutaneous transluminal coronary angioplasty versus atherectomy, cutting balloon atherotomy, or laser angioplasty.
        J Am Coll Cardiol. 2004; 43: 936-942
        • Kini A.
        • Marmur J.D.
        • Duvvuri S.
        • Dangas G.
        • Choudhary S.
        • Sharma S.K.
        Rotational atherectomy: Improved procedural outcome with evolution of technique and equipment. single-center results of first 1,000 patients.
        Catheter Cardiovasc Interv. 1999; 46: 305-311
        • Kini A.S.
        • Vengrenyuk Y.
        • Pena J.
        • Motoyama S.
        • Feig J.E.
        • Meelu O.A.
        • et al.
        Optical coherence tomography assessment of the mechanistic effects of rotational and orbital atherectomy in severely calcified coronary lesions.
        Catheter Cardiovasc Interv. 2015; 86: 1024-1032
        • Safian R.D.
        • Feldman T.
        • Muller D.W.
        • Mason D.
        • Schreiber T.
        • Haik B.
        • et al.
        Coronary angioplasty and Rotablator atherectomy trial (CARAT): immediate and late results of a prospective multicenter randomized trial.
        Catheter Cardiovasc Interv. 2001; 53: 213-220
        • Barbato E.
        • Carrie D.
        • Dardas P.
        • Fajadet J.
        • Gaul G.
        • Haude M.
        • et al.
        European expert consensus on rotational atherectomy.
        EuroIntervention. 2015; 11: 30-36
        • Abdel-Wahab M.
        • Toelg R.
        • Byrne R.A.
        • Geist V.
        • El-Mawardy M.
        • Allali A.
        • et al.
        High-speed rotational atherectomy versus modified balloons prior to drug-eluting stent implantation in severely calcified coronary lesions.
        Circ Cardiovasc Interv. 2018; 11e007415
        • Abdel-Wahab M.
        • Richardt G.
        • Joachim Buttner H.
        • Toelg R.
        • Geist V.
        • Meinertz T.
        • et al.
        High-speed rotational atherectomy before paclitaxel-eluting stent implantation in complex calcified coronary lesions: the randomized ROTAXUS (Rotational Atherectomy Prior to Taxus Stent Treatment for Complex Native Coronary Artery Disease) trial.
        JACC Cardiovasc Interv. 2013; 6: 10-19
        • Furuichi S.
        • Sangiorgi G.M.
        • Godino C.
        • Airoldi F.
        • Montorfano M.
        • Chieffo A.
        • et al.
        Rotational atherectomy followed by drug-eluting stent implantation in calcified coronary lesions.
        EuroIntervention. 2009; 5: 370-374
        • Cao C-f
        • Ma Y-l
        • Li Q.
        • Liu J.
        • Zhao H.
        • Lu M-y
        • et al.
        Comparison of bailout and planned rotational atherectomy for severe coronary calcified lesions.
        BMC Cardiovasc Disord. 2020; 20: 374
        • de Waha S.
        • Allali A.
        • Büttner H.J.
        • Toelg R.
        • Geist V.
        • Neumann F.J.
        • et al.
        Rotational atherectomy before paclitaxel-eluting stent implantation in complex calcified coronary lesions: two-year clinical outcome of the randomized ROTAXUS trial.
        Catheter Cardiovasc Interv. 2016; 87: 691-700
      1. Australian Government Department of Human Services: Medicare Statistics.
        • Kinnaird T.
        • Cockburn J.
        • Gallagher S.
        • Choudhury A.
        • Sirker A.
        • Ludman P.
        • et al.
        Temporal changes in radial access use, associates and outcomes in patients undergoing PCI using rotational atherectomy between 2007 and 2014: results from the British Cardiovascular Intervention Society national database.
        Am Heart J. 2018; 198: 46-54
        • Tehrani S.
        • Achan V.
        • Rathore S.
        Percutaneous retrieval of an entrapped rotational atherectomy burr using novel technique of controlled traction and counter traction.
        Cardiovasc Revasc Med. 2020;
        • Lin C.P.
        • Wang J.H.
        • Lee W.L.
        • Ku P.M.
        • Yin W.H.
        • Tsao T.P.
        • et al.
        Mechanism and management of burr entrapment: A nightmare of interventional cardiologists.
        J Geriatr Cardiol. 2013; 10: 230-234
        • Megaly M.
        • Sandoval Y.
        • Lillyblad M.P.
        • Brilakis E.S.
        Aminophylline for preventing bradyarrhythmias during orbital or rotational atherectomy of the right coronary artery.
        J Invasive Cardiol. 2018; 30: 186-189
        • Gupta T.
        • Weinreich M.
        • Greenberg M.
        • Colombo A.
        • Latib A.
        Rotational atherectomy: a contemporary appraisal.
        Interv Cardiol. 2019; 14: 182-189
        • Whiteside H.L.
        • Nagabandi A.
        • Kapoor D.
        Stentablation with rotational atherectomy for the management of underexpanded and undilatable coronary stents.
        Cardiovas Revasc Med. 2019; 20: 1203-1208
        • Abhyankar A.D.
        • Vaidya K.A.
        • Bernstein L.
        Rotational atherectomy of calcified ostial saphenous vein graft lesion with long term follow-up: a case report.
        Int J Cardiol. 1995; 52: 11-12
        • Benrey J.
        • Mesa A.
        • Jain S.
        • Garcia-Gregory J.
        Successful rotational atherectomy of mid-saphenous vein graft lesions.
        J Interv Cardiol. 1999; 12: 205-208
        • Pagnotta P.
        • Briguori C.
        • Mango R.
        • Visconti G.
        • Focaccio A.
        • Belli G.
        • et al.
        Rotational atherectomy in resistant chronic total occlusions.
        Catheter Cardiovasc Interv. 2010; 76: 366-371
        • Popma J.J.
        • Brogan W.C.
        • Pichard A.D.
        • Satler L.F.
        • Kent K.M.
        • Mintz G.S.
        • et al.
        Rotational coronary atherectomy of ostial stenoses.
        Am J Cardiol. 1993; 71: 436-438
        • Parikh K.
        • Chandra P.
        • Choksi N.
        • Khanna P.
        • Chambers J.
        Safety and feasibility of orbital atherectomy for the treatment of calcified coronary lesions: the ORBIT I trial.
        Catheter Cardiovasc Interv. 2013; 81: 1134-1139
        • Shlofmitz E.
        • Shlofmitz R.
        • Lee M.S.
        Orbital atherectomy: a comprehensive review.
        Interv Cardiol Clin. 2019; 8: 161-171
        • Yamamoto M.H.
        • Maehara A.
        • Karimi Galougahi K.
        • Mintz G.S.
        • Parviz Y.
        • Kim S.S.
        • et al.
        Mechanisms of orbital versus rotational atherectomy plaque modification in severely calcified lesions assessed by optical coherence tomography.
        JACC Cardiovasc Interv. 2017; 10: 2584-2586
        • Goel S.
        • Pasam R.T.
        • Chava S.
        • Gotesman J.
        • Sharma A.
        • Malik B.A.
        • et al.
        Orbital atherectomy versus rotational atherectomy: A systematic review and meta-analysis.
        Int J Cardiol. 2020; 303: 16-21
      2. Comparison of Orbital Versus Rotational Atherectomy Effects On Coronary Microcirculation in PCI.
        • Brinton T.J.
        • Ali Z.A.
        • Hill J.M.
        • Meredith I.T.
        • Maehara A.
        • Illindala U.
        • et al.
        Feasibility of shockwave coronary intravascular lithotripsy for the treatment of calcified coronary stenoses.
        Circulation. 2019; 139: 834-836
        • Chaussy C.
        • Brendel W.
        • Schmiedt E.
        Extracorporeally induced destruction of kidney stones by shock waves.
        Lancet. 1980; 2: 1265-1268
        • Ali Z.A.
        • Brinton T.J.
        • Hill J.M.
        • Maehara A.
        • Matsumura M.
        • Karimi Galougahi K.
        • et al.
        Optical coherence tomography characterization of coronary lithoplasty for treatment of calcified lesions: first description.
        JACC Cardiovasc Imaging. 2017; 10: 897-906
        • Ielasi A.
        • Moscarella E.
        • Testa L.
        • Gioffrè G.
        • Morabito G.
        • Cortese B.
        • et al.
        IntravaScular Lithotripsy for the Management of UndILatable Coronary StEnt: The SMILE Registry.
        Cardiovasc Revasc Med. 2020; 21: 1555-1559
        • Hill J.M.
        • Kereiakes D.J.
        • Shlofmitz R.A.
        • Klein A.J.
        • Riley R.F.
        • Price M.J.
        • et al.
        Intravascular lithotripsy for treatment of severely calcified coronary artery disease.
        J Am Coll Cardiol. 2020; 76: 2635-2646
        • Bittl J.A.
        Clinical results with excimer laser coronary angioplasty.
        Semin Interv Cardiol. 1996; 1: 129-134
        • Litvack F.
        • Grundfest W.
        • Eigler N.
        • Tsoi D.
        • Goldenberg T.
        • Laudenslager J.
        • et al.
        Percutaneous excimer laser coronary angioplasty.
        Lancet. 1989; 334: 102-103
        • Bilodeau L.
        • Fretz E.B.
        • Taeymans Y.
        • Koolen J.
        • Taylor K.
        • Hilton D.J.
        Novel use of a high-energy excimer laser catheter for calcified and complex coronary artery lesions.
        Catheter Cardiovasc Interv. 2004; 62: 155-161
        • Egred M.
        A novel approach for under-expanded stent: excimer laser in contrast medium.
        J Invasive Cardiol. 2012; 24: E161-E163
        • Protty M.B.
        • Hussain H.I.
        • Gallagher S.
        • Al-Raisi S.
        • Aldalati O.
        • Farooq V.
        • et al.
        Excimer laser coronary atherectomy during complex PCI: An analysis of 1,471 laser cases from the British Cardiovascular Intervention Society database.
        Catheter Cardiovasc Interv. 2021; 97 (E653-e60)
        • Reifart N.
        • Vandormael M.
        • Krajcar M.
        • Gohring S.
        • Preusler W.
        • Schwarz F.
        • et al.
        Randomized comparison of angioplasty of complex coronary lesions at a single center. Excimer Laser, Rotational Atherectomy, and Balloon Angioplasty Comparison (ERBAC) Study.
        Circulation. 1997; 96: 91-98
        • Holmes D.R.
        • Mehta S.
        • George C.J.
        • Margolis J.R.
        • Leon M.B.
        • Isner J.M.
        • et al.
        Excimer laser coronary angioplasty: the new approaches to coronary intervention (NACI) experience.
        Am J Cardiol. 1997; 80: 99K-105K
        • Egred M.
        • Brilakis E.S.
        Excimer laser coronary angioplasty (ELCA): fundamentals, mechanism of action, and clinical applications.
        J Invasive Cardiol. 2020; 32: E27-e35
        • Cheng J.M.
        • Garcia-Garcia H.M.
        • de Boer S.P.M.
        • Kardys I.
        • Heo J.H.
        • Akkerhuis K.M.
        • et al.
        In vivo detection of high-risk coronary plaques by radiofrequency intravascular ultrasound and cardiovascular outcome: results of the ATHEROREMO-IVUS study.
        Eur Heart J. 2013; 35: 639-647
        • Lee J.M.
        • Bang J.I.
        • Koo B.K.
        • Hwang D.
        • Park J.
        • Zhang J.
        • et al.
        Clinical relevance of (18)F-sodium fluoride positron-emission tomography in noninvasive identification of high-risk plaque in patients with coronary artery disease.
        Circ Cardiovasc Imaging. 2017; 10
        • Wolterink J.M.
        • Leiner T.
        • de Vos B.D.
        • van Hamersvelt R.W.
        • Viergever M.A.
        • Išgum I.
        Automatic coronary artery calcium scoring in cardiac CT angiography using paired convolutional neural networks.
        Med Image Anal. 2016; 34: 123-136
        • Miao C.
        • Haibo J.
        • Juan Luis G.-C.
        • Akiko M.
        • Ziad A.A.
        • Xiaoling Z.
        • et al.
        Artificial intelligence and optical coherence tomography for the automatic characterisation of human atherosclerotic plaques.
        EuroIntervention. 2021; 17: 41-50
        • Chao C.-T.
        • Yeh H.-Y.
        • Tsai Y.-T.
        • Chuang P.-H.
        • Yuan T.-H.
        • Huang J.-W.
        • et al.
        Natural and non-natural antioxidative compounds: potential candidates for treatment of vascular calcification.
        Cell Death Discov. 2019; 5: 145
        • Chen Y.
        • Zhang Y.
        • Tang Y.
        • Huang X.
        • Xie Y.
        Long-term clinical efficacy and safety of adding cilostazol to dual antiplatelet therapy for patients undergoing PCI: a meta-analysis of randomized trials with adjusted indirect comparisons.
        Curr Med Res Opin. 2014; 30: 37-49
        • Megaly M.
        • Glogoza M.
        • Xenogiannis I.
        • Vemmou E.
        • Nikolakopoulos I.
        • Omer M.
        • et al.
        Coronary intravascular brachytherapy for recurrent coronary drug-eluting stent in-stent restenosis: a systematic review and meta-analysis.
        Cardiovasc Revasc Med. 2021; 23: 28-35
        • Kolodgie F.D.
        • John M.
        • Khurana C.
        • Farb A.
        • Wilson P.S.
        • Acampado E.
        • et al.
        Sustained reduction of in-stent neointimal growth with the use of a novel systemic nanoparticle paclitaxel.
        Circulation. 2002; 106: 1195-1198
        • Margolis J.
        • McDonald J.
        • Heuser R.
        • Klinke P.
        • Waksman R.
        • Virmani R.
        • et al.
        Systemic nanoparticle paclitaxel (nab-paclitaxel) for in-stent restenosis I (SNAPIST-I): a first-in-human safety and dose-finding study.
        Clin Cardiol. 2007; 30: 165-170
        • Raggi P.
        • Bellasi A.
        • Bushinsky D.
        • Bover J.
        • Rodriguez M.
        • Ketteler M.
        • et al.
        Slowing progression of cardiovascular calcification with SNF472 in patients on hemodialysis.
        Circulation. 2020; 141: 728-739
        • Strauss B.H.
        • Osherov A.B.
        • Radhakrishnan S.
        • Mancini G.B.J.
        • Manners A.
        • Sparkes J.D.
        • et al.
        Collagenase Total Occlusion-1 (CTO-1) Trial.
        Circulation. 2012; 125: 522-528
        • Hurst L.C.
        • Badalamente M.A.
        • Hentz V.R.
        • Hotchkiss R.N.
        • Kaplan F.T.
        • Meals R.A.
        • et al.
        Injectable collagenase clostridium histolyticum for Dupuytren's contracture.
        N Engl J Med. 2009; 361: 968-979
        • Thind A.S.
        • Strauss B.H.
        • Karshafian R.
        • Teitelbaum A.A.
        • Ladouceur M.
        • Akbar M.A.
        • et al.
        The use of ultrasound-stimulated contrast agents as an adjuvant for collagenase therapy in chronic total occlusions.
        EuroIntervention. 2014; 10: 484-493
      3. TOSCA-5: A Prospective, Randomized Trial Evaluating Collagenase Infusion in Patients With Coronary Artery Chronic Total Occlusions.
        • Leon M.B.
        • Teirstein P.S.
        • Moses J.W.
        • Tripuraneni P.
        • Lansky A.J.
        • Jani S.
        • et al.
        Localized intracoronary gamma-radiation therapy to inhibit the recurrence of restenosis after stenting.
        N Engl J Med. 2001; 344: 250-256
        • Mukherjee D.
        • Moliterno D.J.
        Brachytherapy for in-stent restenosis: a distant second choice to drug-eluting stent placement.
        JAMA. 2006; 295: 1307-1309
        • Benjo A.
        • Cardoso R.N.
        • Collins T.
        • Garcia D.
        • Macedo F.Y.
        • El-Hayek G.
        • et al.
        Vascular brachytherapy versus drug-eluting stents in the treatment of in-stent restenosis: a meta-analysis of long-term outcomes.
        Catheter Cardiovasc Interv. 2016; 87: 200-208
        • Megaly M.
        • Glogoza M.
        • Xenogiannis I.
        • Vemmou E.
        • Nikolakopoulos I.
        • Willson L.
        • et al.
        Outcomes of intravascular brachytherapy for recurrent drug-eluting in-stent restenosis.
        Catheter Cardiovasc Interv. 2021; 97: 32-38
        • Mahfoud F.
        • Renkin J.
        • Sievert H.
        • Bertog S.
        • Ewen S.
        • Böhm M.
        • et al.
        Alcohol-mediated renal denervation using the peregrine system infusion catheter for treatment of hypertension.
        JACC Cardiovasc Interv. 2020; 13: 471-484
        • Teitelbaum A.A.
        • Qi X.
        • Osherov A.B.
        • Fraser A.R.
        • Ladouceur-Wodzak M.
        • Munce N.
        • et al.
        Therapeutic angiogenesis with VEGF164 for facilitation of guidewire crossing in experimental arterial chronic total occlusions.
        EuroIntervention. 2013; 8: 1081-1089