Advertisement
Heart, Lung and Circulation

Influence of Iron Deficiency on Clinical and Haemodynamic Parameters in Pulmonary Arterial Hypertension Cohorts

Published:November 16, 2022DOI:https://doi.org/10.1016/j.hlc.2022.09.001

      Background

      Iron deficiency (Fedef) has been shown to be common in patients with group 1 or pulmonary arterial hypertension (PAH). Several studies have shown a negative impact of Fedef on clinical and haemodynamic parameters of the disease, but data from individual studies have not been strong enough to lead to incorporation of the finding of Fedef into prognostic or therapeutic algorithms. The goal of this meta-analysis was to combine data from available studies to better define any associations between Fedef and established variables of prognostic importance in PAH.

      Methods

      A literature search identified nine studies with extractable data relevant to the study questions. The impact of Fedef upon the following parameters was evaluated: 6-minute walk distance (6MWD), WHO-functional class, N-terminal pro-brain natriuretic peptide (NT-proBNP) levels, echocardiography, and findings from right heart catheterisation (RHC). Pooled results were reported as mean difference or risk difference with 95% confidence intervals utilising a random effects modeling approach.

      Results

      Fedef in the PAH population was common (47% of cases) and was associated with cardiovascular dysfunction (lower tricuspid annular plane systolic excursion [TAPSE], elevated NT-proBNP, and lower mixed venous oxygen saturation) and with reduction in functional capacity (lower 6MWD and higher functional class).

      Conclusion

      This meta-analysis strengthens the relationships between Fedef and several markers of poor outcome in PAH. Fedef in patients with PAH warrants further scrutiny and merits consideration as a cause of clinical deterioration. Even though causation and longitudinal relationships between Fedef and PAH could not be identified, effect of Fedef on factors that affect disease prognosis is noteworthy and worthy of more focussed studies.

      Keywords

      To read this article in full you will need to make a payment

      Purchase one-time access:

      Academic & Personal: 24 hour online accessCorporate R&D Professionals: 24 hour online access
      One-time access price info
      • For academic or personal research use, select 'Academic and Personal'
      • For corporate R&D use, select 'Corporate R&D Professionals'

      Subscribe:

      Subscribe to Heart, Lung and Circulation
      Already a print subscriber? Claim online access
      Already an online subscriber? Sign in
      Institutional Access: Sign in to ScienceDirect

      References

        • Galie N.
        • Humbert M.
        • Vachiery J.L.
        • Gibbs S.
        • Lang I.
        • Torbicki A.
        • et al.
        2015 ESC/ERS Guidelines for the diagnosis and treatment of pulmonary hypertension: the Joint Task Force for the Diagnosis and Treatment of Pulmonary Hypertension of the European Society of Cardiology (ESC) and the European Respiratory Society (ERS): Endorsed by: Association for European Paediatric and Congenital Cardiology (AEPC), International Society for Heart and Lung Transplantation (ISHLT).
        Eur Heart J. 2016; 37: 67-119
        • Archer S.L.
        • Weir E.K.
        • Wilkins M.R.
        Basic science of pulmonary arterial hypertension for clinicians.
        Circulation. 2010; 121: 2045-2066
        • Kanwar M.
        • Raina A.
        • Lohmueller L.
        • Kraisangka J.
        • Benza R.
        The use of risk assessment tools and prognostic scores in managing patients with pulmonary arterial hypertension.
        Curr Hypertens Rep. 2019; 21: 45
        • Yaghi S.
        • Novikov A.
        • Trandafirescu T.
        Clinical update on pulmonary hypertension.
        J Investig Med. 2020; 68: 821-827
        • Evstatiev R.
        • Gasche C.
        Iron sensing and signalling.
        Gut. 2012; 61: 933-952
        • Ponikowski P.
        • Kirwan B.A.
        • Anker S.D.
        • McDonagh T.
        • Dorobantu M.
        • Drozdz J.
        • et al.
        Ferric carboxymaltose for iron deficiency at discharge after acute heart failure: a multicentre, double-blind, randomised, controlled trial.
        Lancet. 2020; 396: 1895-1904
        • Yamani N.
        • Ahmed A.
        • Gosain P.
        • Fatima K.
        • Shaikh A.T.
        • Qamar H.
        • et al.
        Effect of iron supplementation in patients with heart failure and iron deficiency: a systematic review and meta-analysis.
        Int J Cardiol Heart Vasc. 2021; 36100871
        • Broberg C.S.
        • Bax B.E.
        • Okonko D.O.
        • Rampling M.W.
        • Bayne S.
        • Harries C.
        • et al.
        Blood viscosity and its relationship to iron deficiency, symptoms, and exercise capacity in adults with cyanotic congenital heart disease.
        J Am Coll Cardiol. 2006; 48: 356-365
        • Ruiter G.
        • Lankhorst S.
        • Boonstra A.
        • Postmus P.E.
        • Zweegman S.
        • Westerhof N.
        • et al.
        Iron deficiency is common in idiopathic pulmonary arterial hypertension.
        Eur Respir J. 2011; 37: 1386-1391
        • Ruiter G.
        • Lanser I.J.
        • de Man F.S.
        • van der Laarse W.J.
        • Wharton J.
        • Wilkins M.R.
        • et al.
        Iron deficiency in systemic sclerosis patients with and without pulmonary hypertension.
        Rheumatology (Oxford). 2014; 53: 285-292
        • Wells
        Wells G.A. Wells G. Shea B. Shea B. O’Connell D. Peterson J. The Newcastle-Ottawa Scale (NOS) for assessing the quality of nonrandomised studies in meta-analyses. The Ottawa Hospital Research Institute, 2014
        • Kramer T.
        • Wissmüller M.
        • Natsina K.
        • Gerhardt F.
        • Ten Freyhaus H.
        • Dumitrescu D.
        • et al.
        Ferric carboxymaltose in patients with pulmonary arterial hypertension and iron deficiency: a long-term study.
        J Cachexia Sarcopenia Muscle. 2021; 12: 1501-1512
        • Rhodes C.J.
        • Howard L.S.
        • Busbridge M.
        • Ashby D.
        • Kondili E.
        • Gibbs J.S.
        • et al.
        Iron deficiency and raised hepcidin in idiopathic pulmonary arterial hypertension: clinical prevalence, outcomes, and mechanistic insights.
        J Am Coll Cardiol. 2011; 58: 300-309
        • Soon E.
        • Treacy C.M.
        • Toshner M.R.
        • MacKenzie-Ross R.
        • Manglam V.
        • Busbridge M.
        • et al.
        Unexplained iron deficiency in idiopathic and heritable pulmonary arterial hypertension.
        Thorax. 2011; 66: 326-332
        • Viethen T.
        • Gerhardt F.
        • Dumitrescu D.
        • Knoop-Busch S.
        • ten Freyhaus H.
        • Rudolph T.K.
        • et al.
        Ferric carboxymaltose improves exercise capacity and quality of life in patients with pulmonary arterial hypertension and iron deficiency: a pilot study.
        Int J Cardiol. 2014; 175: 233-239
        • Modesti P.A.
        • Reboldi G.
        • Cappuccio F.P.
        • Agyemang C.
        • Remuzzi G.
        • Rapi S.
        • et al.
        Panethnic differences in blood pressure in Europe: a systematic review and meta-analysis.
        PLoS One. 2016; 11e0147601
        • Ghio S.
        • Fortuni F.
        • Capettini A.C.
        • Scelsi L.
        • Greco A.
        • Vullo E.
        • et al.
        Iron deficiency in pulmonary arterial hypertension: prevalence and potential usefulness of oral supplementation.
        Acta Cardiol. 2021; 76: 162-167
        • van Empel V.P.
        • Lee J.
        • Williams T.J.
        • Kaye D.M.
        Iron deficiency in patients with idiopathic pulmonary arterial hypertension.
        Heart Lung Circ. 2014; 23: 287-292
        • Yu X.
        • Zhang Y.
        • Luo Q.
        • Liu Z.
        • Zhao Z.
        • Zhao Q.
        • et al.
        Iron deficiency in pulmonary arterial hypertension associated with congenital heart disease.
        Scand Cardiovasc J. 2018; 52: 378-382
      1. Higgins J.P.T., T.J. Chandler J. Cumpston M. Li T. Page M.J. Welch V.A. Cochrane Handbook for Systematic Reviews of Interventions version 6.2 (updated February 2021). Cochrane Database Syst Rev, 2021
        • Dong F.
        • Zhang X.
        • Culver B.
        • Chew Jr., H.G.
        • Kelley R.O.
        • Ren J.
        Dietary iron deficiency induces ventricular dilation, mitochondrial ultrastructural aberrations and cytochrome c release: involvement of nitric oxide synthase and protein tyrosine nitration.
        Clin Sci (Lond). 2005; 109: 277-286
        • Melenovsky V.
        • Petrak J.
        • Mracek T.
        • Benes J.
        • Borlaug B.A.
        • Nuskova H.
        • et al.
        Myocardial iron content and mitochondrial function in human heart failure: a direct tissue analysis.
        Eur J Heart Fail. 2017; 19: 522-530
        • Krasinkiewicz J.M.
        • Lahm T.
        Riding the ferrous wheel of iron supplementation in pulmonary arterial hypertension.
        Ann Am Thorac Soc. 2021; 18: 946-948
        • Lee J.W.
        • Ko J.
        • Ju C.
        • Eltzschig H.K.
        Hypoxia signaling in human diseases and therapeutic targets.
        Exp Mol Med. 2019; 51: 1-13
        • Mathai S.C.
        • Puhan M.A.
        • Lam D.
        • Wise R.A.
        The minimal important difference in the 6-minute walk test for patients with pulmonary arterial hypertension.
        Am J Respir Crit Care Med. 2012; 186: 428-433
        • Khirfan G.
        • Almoushref A.
        • Naal T.
        • Abuhalimeh B.
        • Dweik R.A.
        • Heresi G.A.
        • et al.
        Mixed venous oxygen saturation is a better prognosticator than cardiac index in pulmonary arterial hypertension.
        Chest. 2020; 158: 2546-2555
        • Opotowsky A.R.
        • Hess E.
        • Maron B.A.
        • Brittain E.L.
        • Barón A.E.
        • Maddox T.M.
        • et al.
        Thermodilution vs estimated fick cardiac output measurement in clinical practice: an analysis of mortality from the Veterans Affairs Clinical Assessment, Reporting, and Tracking (VA CART) Program and Vanderbilt University.
        JAMA Cardiol. 2017; 2: 1090-1099
        • Sato T.
        • Tsujino I.
        • Ohira H.
        • Oyama-Manabe N.
        • Yamada A.
        • Ito Y.M.
        • et al.
        Validation study on the accuracy of echocardiographic measurements of right ventricular systolic function in pulmonary hypertension.
        J Am Soc Echocardiogr. 2012; 25: 280-286
        • Kawamukai M.
        • Hashimoto A.
        • Koyama M.
        • Nagano N.
        • Nishida J.
        • Mochizuki A.
        • et al.
        Risk classification of pulmonary arterial hypertension by echocardiographic combined assessment of pulmonary vascular resistance and right ventricular function.
        Heart Vessels. 2019; 34: 1789-1800
        • Vuolteenaho O.
        • Ala-Kopsala M.
        • Ruskoaho H.
        BNP as a biomarker in heart disease.
        Adv Clin Chem. 2005; 40: 1-36
        • Howard L.
        • He J.
        • Watson G.M.J.
        • Huang L.
        • Wharton J.
        • Luo Q.
        • et al.
        Supplementation with iron in pulmonary arterial hypertension. Two randomized crossover trials.
        Ann Am Thorac Soc. 2021; 18: 981-988
        • Cook J.D.
        • Dassenko S.
        • Skikne B.S.
        Serum transferrin receptor as an index of iron absorption.
        Br J Haematol. 1990; 75: 603-609
        • von Haehling S.
        • Ebner N.
        • Evertz R.
        • Ponikowski P.
        • Anker Stefan D.
        Iron deficiency in heart failure.
        JACC Heart Fail. 2019; 7: 36-46
        • Simonneau G.
        • Montani D.
        • Celermajer D.S.
        • Denton C.P.
        • Gatzoulis M.A.
        • Krowka M.
        • et al.
        Haemodynamic definitions and updated clinical classification of pulmonary hypertension.
        Eur Respir J. 2019; 53